Skip to main content

Impact of Nanoparticle Shape, Size, and Properties of the Sustainable Nanocomposites

  • Chapter
  • First Online:
Sustainable Polymer Composites and Nanocomposites

Abstract

An impact of nanoparticles physicochemical properties in various applications involves a good understanding between the nanoparticles and a systems physicochemical interactions of specific applications, especially in environmental and biological systems. This chapter is aimed to correlate the properties of nanomaterials such as size, shape, surface morphology and toxicity with its various applications using basic studies to offer a platform for engineering the next generation materials. Also, this chapter will provide the foundation for the study of nanocomposites, its current progress and a perspective on the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullahassan MA, Souabi S, Yaacoubi A, Baudu M (2006) Removal of surfactant from industrial wastewaters by coagulation flocculation process. Int J Environ Sci Technol 3(4):327–332

    Article  Google Scholar 

  2. Adeosun SO, Lawal GI, Balogun Sambo A, Akpan Emmanuel I (2012) Review of green polymer nanocomposites. J Miner Mater Charact Eng 11(4):483–514

    Google Scholar 

  3. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology, Wiley, New York, NY, USA

    Google Scholar 

  4. Amass W, Amass A, Tighe BA (1998) Review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144

    Article  CAS  Google Scholar 

  5. Amuda OS, Amoo IA, Ajayi OO (2006) Performance optimization of coagulation/flocculation process in the treatment of beverage industrial wastewater. J Hazard Mater 129:69–72

    Article  CAS  Google Scholar 

  6. An J, Zhang X, Guo Q, Zhao Y, Wu Z, Li C (2015) Glycopolymer modified magnetic mesoporous silica nanoparticles for MR imaging and targeted drug delivery. Colloids and Surfaces A. Physicochemical Eng Aspects 482:98–108

    Article  CAS  Google Scholar 

  7. Anwunobi AP, Emeje MO (2011) Recent application of natural polymers in nanodrug delievery. J Nanomedic Nanotechnol. S 4:002

    Google Scholar 

  8. Araujo L, Lobenberg R et al (1999) Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target 6:373–385

    Article  CAS  Google Scholar 

  9. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering : a review. Polym Degrad Stab 95:2126–2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007

    Article  CAS  Google Scholar 

  10. Arnida, Malugin A, Ghandehari H (2010) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30(3):212–217

    Google Scholar 

  11. Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries. Bioresour Biotechnol 99:4661–4667

    Article  CAS  Google Scholar 

  12. Bai J, Zhong X, Jiang S, Huang Y, Duan X, (2010) Graphene nanomesh nature nanotechnology (5)3:190–194

    Google Scholar 

  13. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science, 314(5802), 1107–1110 https://doi.org/10.1126/science.1130557

  14. Barakat MA, Al-Hutailah RI, Hashim MH, Qayyum E, Kuhn JN (2013) Titania supported silver-based bimetallic nanoparticles as photocatalysts. Environ Sci Pollut Res 20(6):3751–3759

    Article  CAS  Google Scholar 

  15. Barakat MA, Ramadan MH, Alghamdi MA, Al-Garny SS, Woodcock HL, Kuhn JN (2013) Remediation of Cu (II), Ni (II), and Cr (III) ions from simulated wastewater by dendrimer/ titania composites. J Environ Manage 117:50–57

    Article  CAS  Google Scholar 

  16. Bashi AM, Haddawi SM, Dawood AH (2011) Synthesis and characterizations of two herbicides with Zn/Al layered double hydroxide nanohybrides. J Kerbala Univ 9(1):9–16

    Google Scholar 

  17. Bednarcyk BA (2003) Compos B 34:175–197

    Article  Google Scholar 

  18. Begum N, Sharma B, Pandey RS (2010) Evaluation of insecticidal efficacy of calotropis procera and annona squamosa ethanol extracts against musca domestica. J Biofertil Biopestici 1:101

    Google Scholar 

  19. Buchman JT, Miranda J, Gallagher, Chi-Ta Yang, Xi Zhang, Miriam O P, Krausee Rigoberto, Hernandez, Galya Orr, (2016) Research highlights: examining the effect of shape on nanoparticle interactions with organisms. Environ Sci Nano https://doi.org/10.1039/c6en90015a

  20. Cao K, Jiang Z, Zhao J, Zhao C, Gao C, Pan F, Wang B, Cao X, Yang J (2014) Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. J Membr Sci 469:272–283

    Article  CAS  Google Scholar 

  21. Castangia I, Nácher A, Caddeo C, Valenti D, Fadda AM, Díez-Sales O, Ruiz-Saurí A, Manconi M (2014) Fabrication of quercetin and curcumin bionanovesicles for the prevention and rapid regeneration of full-thickness skin defects on mice. Acta Biomater 10(3):1292–1300

    Article  CAS  Google Scholar 

  22. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  23. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Google Scholar 

  24. Chen L, Bromberg L, Hatton TA, Rutledge GC (2007) Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 48(16):4675–4682

    Article  CAS  Google Scholar 

  25. Chen Z, Mao R et al (2012) Fullerenes for cancer diagnosis and therapy: preparation, biological and clinical perspectives. Curr Drug Metab 13(8):1035–1045

    Article  CAS  Google Scholar 

  26. Chen GC, Shan XQ, Wang YS, Wen B, Pei ZG, Xie YN, Liu T, Pignatello JJ (2009) Adsorption of 2,4,6-trichlorophenol by multiwalled carbon nanotubes as affected by Cu(II). Water Res 43(9):2409–2418

    Article  CAS  Google Scholar 

  27. Chen CZ, Zhou ZW (2004) The preparation of nano-ZnO and its middle infrared-ultraviolet-visible light absorption properties. J Funct Mater 35:97–98

    CAS  Google Scholar 

  28. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev 107:2891–2959

    Google Scholar 

  29. Cheung RC, Ng TB, Wong JH, Chan WY (2015) Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs 13:5156–5186

    Article  CAS  Google Scholar 

  30. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–8

    Google Scholar 

  31. Cioffi N, Torsi L, Ditaranto N et al (2004) Antifungal activity of polymer- based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419

    Article  CAS  Google Scholar 

  32. Crandall BC (ed) (1996) Nanotechnology MIT Press, Cambridge

    Google Scholar 

  33. Dash MP, Tripathy M, Sasmal A, Mohanty GC, Nayak P (2010) Poly(anthranilic acid)/multi-walled carbon nanotube composites: spectral, morphological, and electrical properties. J Mater Sci 45(14) 3858–3865

    Google Scholar 

  34. Deborah DL, Chung (2002) Composite materials, functional materials for modern technologies, Springer-Verlag London Ltd, UK

    Google Scholar 

  35. Deepachitra R, Nigam R, Prohit SD, et al (2014) In vitro study of hydroxyapatite coatings on fibrin functionalized/pristine graphene oxide for bone grafting. Mater Manuf Process 30(6):804–811

    Google Scholar 

  36. Dobkowski J, Kołos R, Kamiński J, Kowalczyńska HM (1999) Cell adhesion to polymeric surfaces: experimental study and simple theoretical approach. J Biomed Mater Res 47:234–242

    Article  CAS  Google Scholar 

  37. Drzal LT (2010) Sustainable biodegradable green nanocomposites from bacterial bioplastic for automotive applications. http//www.egr.msu.edu/cmsc/biomaterials/index.html (accessed on 20 August 2010)

  38. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1. 51:7433–7443

    Google Scholar 

  39. Fang J, Fan H, Ma Y, Wang Z, Chang Q (2015) Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Appl Surface Sci 332:47–54

    Article  CAS  Google Scholar 

  40. Feldherr CM, Lanford RE, Akin D (1992) Signal-mediated nuclear transport in simian virus 40–transformed cells is regulated by large tumor antigen. Proc Natl Acad Sci USA 15:11002–11005

    Article  Google Scholar 

  41. Floody MC, Theng B, Reyes P, Mora M (2009) Natural nanoclays: applications and future trends–a Chilean perspective. Clay Miner 44:161–176

    Article  CAS  Google Scholar 

  42. Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomed 1(4):441–449

    Article  CAS  Google Scholar 

  43. Fonseca-Santos B, Chorilli M (2017) An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Mater Sci Eng C Mater Biol Appl 77:1349–1362

    Article  CAS  Google Scholar 

  44. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995). SERS Substrates. Science 267

    Google Scholar 

  45. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview 608–622

    Google Scholar 

  46. Gao C, Zhang W, Li H, Lang L, Xu Z (2008) Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst Growth Des 8:3785–3790

    Article  CAS  Google Scholar 

  47. Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75(6):825–830

    Article  CAS  Google Scholar 

  48. Giannees BEP (1996). Polymer layered silicate nanocomposites. 29–35

    Google Scholar 

  49. Giannelis EP (1996) Adv Mater 8:29

    Article  CAS  Google Scholar 

  50. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1

    Article  CAS  Google Scholar 

  51. Graham K, Schreuder-gibson H, Gogins M (2003) Incorporation of electrospun nanofibers into functional structures. Tech Assos Pulp Pap Ind 1–16

    Google Scholar 

  52. Grant SA, Spradling CS, Grant DN (2014) Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold. J Biomed Mater Res, Part A 102:332–339

    Article  CAS  Google Scholar 

  53. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618

    Article  CAS  Google Scholar 

  54. Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on-theflame behavior. Ind Eng Chem Res 50:7772–7783

    Article  CAS  Google Scholar 

  55. Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    Article  CAS  Google Scholar 

  56. Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195

    Article  Google Scholar 

  57. He P, Sahoo S, Ng KS, Chen K, Toh SL, Goh JC (2013) Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. J Biomed Mater Res A 101:555–566

    Google Scholar 

  58. Heydarnejad MS, Rahnama S, Mobini-Dehkordi M, Yarmohammadi P, Aslnai H (2014) Sliver nanoparticles accelerate skin wound healing in mice (Musmusculus) through suppression of innate immune system. Nanomed J 1(2):79–87

    Google Scholar 

  59. Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  60. Huang ZN, Wang XL, Yang DS (2015) Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci Eng 8(3):226–232

    Google Scholar 

  61. Huang J, Bu L, Xie J, Chen K, Cheng Z, Li X, Chen X (2010) Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano 4(12):7151–60

    Google Scholar 

  62. Ihsanullah Al-Khaldi FA, Abusharkh B, Khaled M, Atieh MA, Nasser MS, Saleh TA, Agarwal S, Tyagi I, Gupta VK (2015) Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. J Molecul Liq 204:255–263

    Article  CAS  Google Scholar 

  63. Jamshidian M, Tehrany EA, Imran M et al (2010) Poly-lactic acid: Production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  64. Jiang H, Lau M, Tellkamp VL, Lavernia EJ (2000) Synthesis of nanostructured coatings by high velocity oxygen-fuel thermal spraying. In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology, Academic Press, San Diego, CA, USA

    Google Scholar 

  65. Jin R, Lin B, Li D, Ai H (2014) Super paramagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27

    Article  CAS  Google Scholar 

  66. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364

    Article  CAS  Google Scholar 

  67. Jolanta P, Marcin B, Zygmunt K (2011) Nanosilver—making difficult decisions. Ecol Chem Eng 18(2)

    Google Scholar 

  68. Jolivet JP, Henry M, Livage J (2000) Metal oxide chemistry and synthesis: from solution to solid state. Wiley, New York

    Google Scholar 

  69. Kaminskas LM, Boyd BJ et al (2011) Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine 6(6):1063–1084

    Article  CAS  Google Scholar 

  70. Katepalli H, Bikshapathi M, Sharma CS, Verma N, Sharma A (2011) Synthesis of hierarchical fabrics by electrospinning of PAN nanofibers on activated carbon microfibers for environmental remediation applications. Chem Eng J 171(3):1194–1200

    Article  CAS  Google Scholar 

  71. Keledi G, Hari J, Pukanszky B (2012) Polymer nanocomposites: structure, interaction, and functionality. Nanoscale 4:1919

    Article  CAS  Google Scholar 

  72. Khan WS, Ceylan M, Asmatulu R (2012) Effects of nanotechnology on global warming. In: ASEE midwest section conference, Rollo, MO, 19–21, Sep 2012, p 13

    Google Scholar 

  73. Khatamiana M, Divband B, Daryana M (2016) Preparation, characterization and antimicrobial property of Ag+- nano Chitosan/ZSM-5: novel Hybrid Biocomposites. Nanomed J 3(4):268–279

    Google Scholar 

  74. Kijeńska E, Prabhakaran MP, Swieszkowski W, Kurzydlowski KJ, Ramakrishna S (2012) Electrospun bio-composite P (LLACL)/ collagen I/collagen III scaffolds for nerve tissue engineering. J Biomed Mater Res B Appl Biomater 100(4):1093–1102

    Google Scholar 

  75. Kinnear C, Moore Thomas L, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A (2017) Form follows function. Nanoparticle shape and its implications for nanomedicine. Chem Rev 117:11476–11521

    Article  CAS  Google Scholar 

  76. Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209

    Article  CAS  Google Scholar 

  77. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781

    Article  CAS  Google Scholar 

  78. Kudumula KK (2016) Scope of polymer nano-composite in bio-medical applications. IOSR-JMCE 13(5):18–21

    Google Scholar 

  79. Kumar A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  80. Kumar SK, Krishnamoorti R (2010) Annu Rev Chem Biomol Eng 1:37

    Article  CAS  Google Scholar 

  81. Kyzas GZ, Bikiaris DN, Seredych M, Bandosz TJ, Deliyanni EA (2014) Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/ poly (acrylic acid) grafted chitosan nanocomposite. Bioresour Technol 152:399–406

    Article  CAS  Google Scholar 

  82. Langer R, Vacanti J (1993) Tissue engineering science (80) 260:920–6

    Google Scholar 

  83. Leceta I, Guerrero P, Ibarburu I, Duenas MT, de la Caba K (2013) Characterization and antimicrobial analysis of chitosan based films. J Food Engineering 116(4):889– 899

    Google Scholar 

  84. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  Google Scholar 

  85. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Polish J Environ Stud 19:255–266

    Google Scholar 

  86. Leu JG, Chen SA, Chen HM, Wu WM, Hung CF, Yao YD, Tu CS, Liang YJ (2012) The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine. 8(5):767–775

    Article  CAS  Google Scholar 

  87. Li et al (2015) Nanoscale 7:16631–16646. https://doi.org/10.1039/C5NR02970H

    Article  CAS  Google Scholar 

  88. Litzinger DC et al (1994) Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly (ethylene glycol)-containing liposomes. Biochim Biophys Acta 1190(1):99–107

    Article  CAS  Google Scholar 

  89. Liu D, Zhu Y, Li Z, Tian D, Chen L, Chen P (2013) Chitin nanofibrils for rapid and efficient removal of metal ions from water system. Carbohydr Polym 98:483–489

    Article  CAS  Google Scholar 

  90. Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123(9):2058–2059

    Article  CAS  Google Scholar 

  91. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small Jun 5(12):1408–1413

    Article  CAS  Google Scholar 

  92. Luo T, Cui J, Hu S, Huang Y, Jing C (2010) Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol 44(23):9094–9098

    Article  CAS  Google Scholar 

  93. Ma Z, Lim LY (2003) Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res 20(11):1812–1819

    Google Scholar 

  94. Mago G, Jana SC, Ray SS, Mcnally T, Mcnally T (2012) Polymer nanocomposite processing, characterization, and applications. https://doi.org/10.1155/2012/924849

  95. Mago G, Ray SS, Shofner ML, Wang S, Zhang J (2013) Polymer nanocomposite processing, characterization, and applications. J Nanomater https://doi.org/10.1155/2014/403492

  96. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    Article  CAS  Google Scholar 

  97. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  98. Mangaiyarkarasi R, Chinnathambi S, Karthikeyan S, Aruna P, Gane- san S (2016) Paclitaxel conjugated Fe3O4.LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application. J Magn Magn Mater 399:207–215

    Google Scholar 

  99. Matthews FL, Rawlings RD (1999) Composite materials: engineering and science: Elsevier, Amsterdam, The Netherland

    Google Scholar 

  100. Mayer LD et al (1989) Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res 49(21):5922–5930

    CAS  Google Scholar 

  101. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macrmol Mater Eng 276(277):1–24

    Google Scholar 

  102. Murphy PS, Evans GRD (2012) Advances in wound healing: a review of current wound healing products. Plast Sur Int 190436:1–8

    Google Scholar 

  103. Murugesan S, Mousa SA et al (2007) Carbon inhibits vascular endothelial growth factor- and fibroblast growth factor-promoted angiogenesis. FEBS Lett 581:1157–1160

    Article  CAS  Google Scholar 

  104. Nagayasu A, Uchiyama K, Kiwada H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40(1–2):75–87

    Google Scholar 

  105. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  106. Nanjwade BK, Derkar GK, Bechra HM, Nanjwade VK, Manvi FV (2011) Design and characterization of nanocrystals of lovastatin for solubility and dissolution enhancement. J Nanomedic Nanotechnol 2:107

    Article  CAS  Google Scholar 

  107. Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38:1487–1503

    Article  CAS  Google Scholar 

  108. Ovissipour M, Roopesh SM, Rasco BA, Sablani SS (2014) Engineered nanoparticles (ENPs): applications, risk assessment, and risk management in the agriculture and food sectors, In: Wang S (ed) Food chemical hazard detection: development and application of new technologies Wiley, Chichester, UK. https://doi.org/10.1002/9781118488553.ch7

  109. Pandey JK, Chu WS, Lee CS et al (2007) Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. Presented at the international symposium on polymers and the environment: emerging technology and science, bioenvironmental polymer society (BEPS), Vancouver, WA, USA, 17–20 October 2007

    Google Scholar 

  110. Panupakorn P, Chaichana E, Praserthdam P, Jongsomjit B (2013) Polyethylene/clay nanocomposites produced by in situ polymerization with zirconocene/MAO catalyst. J Nanomater https://doi.org/10.1155/2013/154874

  111. Park KE, Jung SY, Lee SJ, Min BM, Park WH (2006) Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol 38:165–173

    Article  CAS  Google Scholar 

  112. Paul DR, Robeson LM (2008) Polymer 49:3187

    Article  CAS  Google Scholar 

  113. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(15):2693–2700

    Google Scholar 

  114. Qiu Y, Liu Y, Wang LM, Xu LG, Bai R et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    Article  CAS  Google Scholar 

  115. Rastogi V, Yadav P et al (2014) Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J Drug Deliv 670815

    Google Scholar 

  116. Raveendran P, Fu J, Wallen SL (2003) Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941. https://doi.org/10.1021/ja029267j

  117. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2012) Advances in polymeric systems for tissue engineering and biomedical applications. Macromol Biosci 12:286–311. https://doi.org/10.1002/mabi.201100325

    Article  CAS  Google Scholar 

  118. Ray SS (2013) Environmentally friendly polymer nanocomposites, types, processing and properties. Woodhead Publishing Series in Composites Science and Engineering. 44, Woodhead Publishing Ltd

    Google Scholar 

  119. Reddy RJ (2010) Preparation, characterization and properties of injection molded graphene nanocomposites, Master’s thesis, Mechanical Engineering, Wichita State University, Wichita, Kansas, USA

    Google Scholar 

  120. Reneker DH, Fong H (2006) Polymeric nanofiber. American Chemical Society Publishers, Washington. 1–6

    Google Scholar 

  121. Rhim J, Park HM, Ha CS (2013) Bionanocomposites for food packaging application. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  122. Roco MC, Williams S, Alivisatos P (eds) (2000) nanotechnology research directions: IWGN workshop report vision for nanotechnology in the next decade, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  123. Roy R, Roy R, Roy D (1986) Alternative perspectives on “quasi-crystallinity”, non-uniformity and nanocomposites. Mater Lett 4:323–328

    Article  Google Scholar 

  124. Sanginario A, Miccoli B et al (2017) Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors 7(1):9

    Article  CAS  Google Scholar 

  125. Savva I, Krekos G, Taculescu A, Marinica O, Vekas L, Krasia-christoforou T (2012) Fabrication and characterization of magnetoresponsive electrospun nanocomposite membranes based on methacrylic random copolymers and magnetite nanoparticles. J Nanomater 9. https://doi.org/10.1155/2012/578026

  126. Shahidi S, Ghoranneviss M (2014) Effect of plasma pretreatment followed by nanoclay loading on flame retardant properties of cotton fabric. J. Fusion Energ 33:88

    Article  CAS  Google Scholar 

  127. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  CAS  Google Scholar 

  128. Sinha SR, Bousmina M, MaiY YuZ (2006) Eds Biodegradable polymer/layered silicate nanocomposites. Polymer nanocomposites. Woodhead Publishing and Maney Publishing, Cambridge, England, pp 57–129

    Chapter  Google Scholar 

  129. Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  130. Stamatialis DF, Papenburg BJ, Giron M, Bettahalli SM, Schmitmeier S, Wessling M (2008) Medical applications of membranes. Drug Delivery Artif Organs Tissue Eng 308:1–34. https://doi.org/10.1016/j.memsci.2007.09.059

    Article  CAS  Google Scholar 

  131. Stander L, Theodore L (2011) Environmental implications of nanotechnology—an update. Int J Environ Res Public Health 8:470–479

    Article  Google Scholar 

  132. Starr FW, Glotzer SC, Dutcher JR, Marangoni AG (eds) (2004) Soft materials, structure and dynamics, Marcel Dekker, New York

    Google Scholar 

  133. Sultana N, Mokhtar M, Hassan MI, Jin RM, Roozbahani F, Khan TH (2015) Chitosan-based nanocomposite scaffolds for tissue engineering applications. Mater Manuf Process 30:273–278

    Article  CAS  Google Scholar 

  134. Suryanarayana C (1994) Structure and properties of nanocrystalline materials. Bull Mater Sci 17:307

    Article  CAS  Google Scholar 

  135. TPA Plast global engineering nanocomposite polymers. http://www.tpacomponents.com/uploads/pdf/en/0305_EN.pdf (accessed on 20 August 2010)

  136. Tabiei A, Aminjikarai SB (2009) Compos Struct 88:65–82

    Article  Google Scholar 

  137. Tanaka (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies material characterization and future applications, IEEE Trans Dielectr Electr Insul 11:5

    Google Scholar 

  138. Tang X, Zhang Q, Liu Z, Pan K, Dong Y, Li Y (2014) Removal of Cu (II) by loofah fibers as a natural and low-cost adsorbent from aqueous solutions. J Mol Liq 199:401–407

    Article  CAS  Google Scholar 

  139. Tarigh GD, Shemirani F (2013) Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices. Talanta 115:744–750

    Article  CAS  Google Scholar 

  140. Thomas S, Waterman P, Chen S, Marinelli B, Seaman M et al (2011) Development of secreted protein and acidic and rich in cysteine (SPARC) targeted nanoparticles for the prognostic molecular imaging of metastatic prostate cancer. J Nanomedic Nanotechnol 2:112

    Article  CAS  Google Scholar 

  141. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516

    Article  CAS  Google Scholar 

  142. Toy R et al (2013) Multimodal in vivo imaging exposes the voyage of nanoparticles in tumor microcirculation. ACS Nano 7(4):3118–3129

    Article  CAS  Google Scholar 

  143. Tripathi A, Saravanan S, Pattnaik S, Moorthi A, Partridge NC, Selvamurugan N (2012) Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int J Biol Macromol 50:294–299

    Article  CAS  Google Scholar 

  144. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96 1533–1554. https://doi.org/10.1021/cr9502357

  145. Vaia RA, Giannelis EP (2001) MRS Bull 26:394

    Article  CAS  Google Scholar 

  146. Vaia RA, Giannelis EP (eds) (2001) Polymer nanocomposites. American Chemical Society, Washington

    Google Scholar 

  147. Varela JA, Bexiga MG, Åberg C, Simpson JC, Dawson KA (2012) Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. J Nanobiotechnol 10(1):39

    Google Scholar 

  148. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  Google Scholar 

  149. Venkatesan J, Kim SK (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 10:3124–3140

    Article  CAS  Google Scholar 

  150. Vllasaliu et al (2014) Expert Opin. Drug Delivery 11:139–154. https://doi.org/10.1517/17425247.2014.866651

    Article  CAS  Google Scholar 

  151. Wan Y, Chen X, Xiong G, Guo R, Luo H (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Mater Express 4:429–434

    Article  CAS  Google Scholar 

  152. Wang J, Byrne JD, Napier ME, De Simone JM (2011) More effective nanomedicines through particle design. Small 7:1919–1931

    Article  CAS  Google Scholar 

  153. Wang X, Wenk E, Matsumoto A, Meinel L, Li C, Kaplan DL (2007) Silk microspheres for encapsulation and controlled release. J Control Release 117:360–370

    Article  CAS  Google Scholar 

  154. Wang HQ, Yang GF, Li QY, Zhong XX, Wang FP, LiZ S, Li YH (2011) Porous nano-MnO2 Large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J Chem 35:469–475

    Article  CAS  Google Scholar 

  155. Wang R, Yang J, Zheng Z, Carducci MD, Jiao J, Seraphin S, (2001) Dendron-Controlled Nucleation and Growth of Gold Nanoparticles. Angew Chem Int Edi 40(3) 549–552

    Google Scholar 

  156. Wang SH, Lee CW, Chiou A, Wei PK (2010) Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol 8(1):33

    Google Scholar 

  157. Wypych G (1999) Handbook of fillers, 4th edn. ChemTec Publishing, Toronto

    Google Scholar 

  158. X Wu, P Liu (2010) Polymer grafted multiwalled carbon nanotubes via facile in-situ solution radical polymerisation. J Exp Nanosci 5(5):383–389. https://doi.org/10.1080/17458080903583956

  159. Xu Z, Gu Q, Hu H, Li F (2008) A novel electrospun polysulfone fiber membrane: application to advanced treatment of secondary bio-treatment sewage. Environ Technol 29:13–21

    Article  Google Scholar 

  160. Xu D, Tan X, Chen C, Wang X (2008) Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  161. Yadav M, Rhee KY, Park SJ (2014) Synthesis and characterization of grapheneoxide/carboxymethylcellulose/alginate composite blend films. Carbohydr Polym 110:18–25

    Article  CAS  Google Scholar 

  162. Yaehne K et al (2013) Nanoparticle accumulation in angiogenic tissues: towards predictable pharmacokinetics. Small 9(18):3118–3127

    Article  CAS  Google Scholar 

  163. Zhang Y, Shen Z, Dai C, Zhou X (2014) Removal of selected pharmaceuticals from aqueous solution using magnetic chitosan: Sorption behaviour and mechanism. Environ Sci Pollut Res 21:12780–12789

    Article  CAS  Google Scholar 

  164. Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG (2016) Bacillus subtilis spore inner membrane proteome. J Proteome Res 15:585–594

    Google Scholar 

  165. Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thandapani Gomathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomathi, T., Rajeshwari, K., Kanchana, V., Sudha, P.N., Parthasarathy, K. (2019). Impact of Nanoparticle Shape, Size, and Properties of the Sustainable Nanocomposites. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_11

Download citation

Publish with us

Policies and ethics