Skip to main content

Articular Cartilage Restoration in the Multiple Ligament Injured Knee

  • Chapter
  • First Online:
The Multiple Ligament Injured Knee

Abstract

Articular cartilage injuries are frequently encountered in the setting of a multi-ligament injured knee. Despite the typically higher energy mechanism, chondral injury patterns seem to be similar to isolated anterior cruciate ligament injured knees. Current treatment management of the multi-ligament knee often includes surgical intervention with repair and reconstruction within three weeks of injury. In this setting, it can be quite difficult to determine if a chondral or osteochondral lesion is symptomatic. Since we still do not have an understanding as to the natural history of most chondral lesions, it can be impossible to determine which lesions will cause persistent symptoms and which will remain asymptomatic. No studies have evaluated concomitant multi-ligament surgery and articular cartilage restoration procedures. It is our experience that only a small subset of these lesions may cause persistent symptoms directly attributable to the defect. However, this subset may benefit from articular cartilage procedures in a delayed fashion. Acute and secondary treatment considerations must stress minimizing morbidity in the setting of the multi-ligament knee. Unfortunately, the development of progressive degenerative changes may occur regardless in this setting. This degenerative course may be multifactorial and not primarily attributable to acute chondral injury. Many patients may ultimately require an arthroplasty to address their advanced post-traumatic arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirschman M, Iranpour F, Muller W, Friederich N. Surgical treatment of complex bicruciate knee ligament injuries in athletes; What long-term outcome can we expect? Am J Sports Med. 2010:1103–9.

    Google Scholar 

  2. Fanelli GC, Orcutt DR, Edson CJ. The multiple-ligament injured knee: evaluation, treatment and results. Arthroscopy. 2005:471–86.

    Article  Google Scholar 

  3. Fanelli GC, Stannard JP, Stuart MJ et al. Management of complex knee ligament injuries. JBJS. 2010;92A:2235–46.

    Google Scholar 

  4. Kaeding CC, Pderoza AD, Parker RD, et al. Intra-articular findings in the reconstructed multiligament-injured knee. Arthroscopy. 2005:424–30.

    Article  Google Scholar 

  5. Fanelli GC (ed). The multiple ligament injured knee: a practical guide to management. New York: Springer; 2004.

    Google Scholar 

  6. Fanelli GC, Edson CJ. Arthroscopically assisted ACL/PCL reconstruction: 2–10 year follow-up. Arthroscopy. 2002:703–14.

    Google Scholar 

  7. Cole BJ. Harner CD. The multiple ligament injured knee. Clin Sports Med. 1999:241–62.

    Article  CAS  PubMed  Google Scholar 

  8. Sisto DJ. Warren RF. Complete knee dislocation: a follow-up study of operative treatment. Clin Orthop. 1985:94–101.

    Google Scholar 

  9. Ibrahim SA, Ahmad FH, Salah M, et al. Surgical management of traumatic knee dislocation. Arthroscopy. 2008:178–87.

    Article  Google Scholar 

  10. Chhabra A, Cha PS, Rihn JA, et al. Surgical management of knee dislocations. Surgical technique. J Bone Joint Surg Am. 2005;Suppl 1:1–21.

    Article  PubMed  Google Scholar 

  11. Brophy RH, Zeltser D, Wright RW, et al. Anterior cruciate ligament reconstruction and concomitant articular cartilage injury: Incidence and treatment. Arthroscopy. 2010:112–20.

    Article  Google Scholar 

  12. Granan LP, Bahr R, Lie SA, et al. Timing of anterior cruciate ligament reconstructive surgery and risk of cartilage lesions and meniscal tears: a cohort study based on the Norwegian national knee ligament registry. Am J Sports Med. 2009:955–61.

    Article  PubMed  Google Scholar 

  13. Slauterbeck JR, Kousa P, Clifton BC, et al. Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J Bone and Joint Surg Am. 2009:2094–103.

    Article  PubMed  Google Scholar 

  14. Lind M, Menhert F, Pedersen AB. The first results from the Danish ACL reconstructive registry: epidemiologic and 2 year follow-up results from 5818 knee ligament reconstructions. Knee Surg Sports Traumatol Arthrosc. 2009:117–24.

    Article  PubMed  Google Scholar 

  15. Corten K, Bellemans J. Cartilage damage determines intermediate outcome in the late multiple ligament and posterolateral corner-reconstructed knee: a 5- to 10-year follow-up study. Am J Sports Med. 2008;267–75.

    Article  PubMed  Google Scholar 

  16. Shelbourne KD, Gray JS. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study. J Bone Joint Surg Am. 2003;Suppl 2:8–16.

    Article  PubMed  Google Scholar 

  17. Bowers AL, Spindler KP, McCarty EC, et al. Height, weight, and BMI predict intra-articular injuries observed during ACL reconstruction: evaluation of 456 cases from a prospective ACL database. Clin J Sports Med. 2005;15(1):9–13.

    Article  Google Scholar 

  18. Hart JM, Blanchard BF, Hart JA, et al. Multiple ligament reconstruction clinical follow-up and gait analysis. Knee Surg Sports Traumatol Arthrosc. 2009:277–85.

    Google Scholar 

  19. Nelson F, Billinghurst RC, Pidoux I, et al. Early post-taumatic osteoarthritis-like changes in human articular cartilage following rupture of the anterior cruciate ligament. Osteoarthrits Cartilage. 2006:114–9.

    Article  CAS  PubMed  Google Scholar 

  20. Safran MR, Seiber K. The evidence for surgical repair of articular cartilage in the knee. J Am Acad Orthop Surg. 2010:259–66.

    Article  Google Scholar 

  21. Osti L, Papalia R, DelBuono A, et al. Good results five years after surgical management of anterior cruciate ligament tears, and meniscal and cartilage injuries. Knee Surg Sports Traumatol Arthrosc. 2010:1385–90.

    Article  PubMed  Google Scholar 

  22. Magnussen RA, Mansour AA, Carey JL, Spindler KP. Meniscus status at anterior cruciate ligament reconstruction associated with radiographic signs of osteoarthritis at 5- to 10-year follow-up: a systemic review. J Knee Surg. 2009:347–57.

    Article  PubMed  Google Scholar 

  23. Potter HG, Jain SK, Ma Y, Black BR, Fung S, Lyman S. Cartilage injury after acute, isolated anterior cruciate ligament tear: immediate and longitudinal effect with clinical/MRI follow-up. Am J Sports Med. 2012;40(2):276–85.

    Article  PubMed  Google Scholar 

  24. Bisson LJ, Kluczynski MA, Wind WM, et al. How does the presence of unstable chondral lesions affect patient outcomes after partial meniscectomy? The champ randomized controlled trial. Am J Sports Med. 2017;1:363546517744212.

    Google Scholar 

  25. Røtterud JH, Siversten EA, Forssblad M, Engebretsen L, Årøen A. Effect on patient-reported outcomes of debridement or microfracture of concomitant full-thickness cartilage lesions in anterior cruciate ligament-reconstructed knees: a nationwide cohort study from Norway and Sweden of 357 patients with 2-year follow-up. Am J Sports Med. 2016;44(2):337–44.

    Article  PubMed  Google Scholar 

  26. Ulstein S, Bredland K, Årøen A, Engebretsen L, Røtterud JH. No negative effect on patient-reported outcome of concomitant cartilage lesions 5–9 years after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2017;25(5):1482–8.

    Article  PubMed  Google Scholar 

  27. Scillia AJ, Aune KT, Andrachuk JS, et al. Return to play after chondroplasty of the knee in national football league athletes. Am J Sports Med. 2015;43(3):663–8.

    Article  PubMed  Google Scholar 

  28. Brophy RH, Gray BL, Nunley RM, Barrack RL, Clohisy JC. total knee arthroplasty after previous knee surgery: expected interval and the effect on patient age. J Bone Joint Surg Am. 2014;96(10):801–5.

    Article  PubMed  Google Scholar 

  29. Sanders TL, Pareek A, Kremers HM, et al. Long-term follow-up of isolated ACL tears treated without ligament reconstruction. Knee Surg Traumatol Arthrosc. 2017;25(2):493–500.

    Article  Google Scholar 

  30. Sanders TL, Kremers HL, Bryan AJ, et al. Is anterior cruciate ligament reconstruction effective in preventing secondary meniscal tears and osteoarthritis? Am J Sports Med. 2016;44(7):1699–707.

    Article  PubMed  Google Scholar 

  31. Mithoefer K, Williams RJ, Warren RF, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am. 2005:1911–20.

    Article  Google Scholar 

  32. Knutsen G. Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004:455–64.

    Article  Google Scholar 

  33. Gomoll AH, Farr J, Gillogly SD, et al. Surical management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;2470–90.

    Google Scholar 

  34. Widuchowski W, Widuchowski J, Koczy B, et al. Untreated asymptomatic deep cartilage lesions associated with anterior cruciate ligament injury: results at 10- and 15-year follow-up. Am J Sports Med. 2009;688–92.

    Article  PubMed  Google Scholar 

  35. Bekkers JE, Inklaar M, Saris DB. Treatment selection in articular cartilage lesions of the knee. Am J Sports Med. 2009; Suppl. 1:148S–155S.

    Google Scholar 

  36. Aron A, Loken S, Heir S, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004:211–5.

    Google Scholar 

  37. Hanypsiak BT, Spindler KP, Rothrock CR, et al. Twelve-year follow-up on anterior cruciate ligament reconstruction: long-term outcomes of prospectively studied osseous and articular injuries. Am J Sports Med. 2008;671–7.

    Article  PubMed  Google Scholar 

  38. Gudas R, Gudaitė A, Mickevičius T, et al. Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: a prospective study with a 3-year follow-up. Arthroscopy. 2013;29(1):89–97.

    Article  Google Scholar 

  39. Bisson LJ, Kluczynski MA, Wind WM, et al. Patient outcomes after observation versus debridement of unstable chondral lesions during partial meniscectomy: the chondral lesions and meniscus procedures (ChAMP) randomized controlled trial. J Bone Joint Surg Am. 2017;99(13):1078–85.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Røtterud JH, Siversten EA, Forssblad M, Engebretsen L, Arøen A. Effect of meniscal and focal cartilage lesions on patient-reported outcome after anterior cruciate ligament reconstruction: a nationwide cohort study from Norway and Sweden of 8476 patients with 2-year follow-up. Am J Sports Med. 2013;41(3):535–43.

    Article  PubMed  Google Scholar 

  41. Loken S, Heir S, Holme I, et al. 6-year follow-up of 84 patients with cartilage defects in the knee. Knee scores improved but recovery was incomplete. Acta Orthop. 2010:611–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cox CL, Huston LJ, Dunn WR, et al. Are articular cartilage lesions and meniscus tears predictive of IKDC, KOOS, and marx activity level outcomes after ACL reconstruction? A 6-year multicenter cohort study. Am J Sports Med. 2014;42(5):1058–67.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, Smailys A. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005;21(9):1066–75.

    Article  PubMed  Google Scholar 

  44. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 2007;89(10):2105–112.

    Google Scholar 

  45. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2013;22(9):1986–96.

    Article  PubMed  Google Scholar 

  46. Goyal D, Keyhani S, Lee EH, Hui JH. Evidence-based status of microfracture technique: a systematic review of level I and II studies. Arthroscopy. 2013;29(9):1579–88.

    Article  PubMed  Google Scholar 

  47. Bae DK, Song SJ, Yoon KH, Heo DB, Kim TJ. Survival analysis of microfracture in the osteoarthritic knee-minimum 10-year follow-up. Arthroscopy. 2013;29(2):244–50.

    Article  PubMed  Google Scholar 

  48. Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14(11):1119–25.

    Article  CAS  PubMed  Google Scholar 

  49. Hettrich CM, Dunn WR, Reinke EK, MOON Group, Spindler KP. The rate of subsequent surgery and predictors following ACL reconstruction: two- and six-year follow-up from a multicenter cohort. Am J Sports Med. 2013;41(7):1534–40.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shelbourne KD, Jari S, Gray T. Outcome of untreated traumatic articular cartilage defects of the knee: a natural history study. J Bone Joint Surg Am. 2003;85-A(Suppl 2):8–16.

    Article  PubMed  Google Scholar 

  51. Shelbourne KD, Benner RW, Gray T. Results of anterior cruciate ligament reconstruction with patellar tendon autografts: objective factors associated with the development of osteoarthritis at 20–33 years after surgery. Am J Sports Med. 2017;45(12):2730–8.

    Article  PubMed  Google Scholar 

  52. Spahn G, Kahl E, Muckley T, et al. Arthroscopic knee chondroplasty using a bipolar radiofrquency-based device compared to mechanical shaver: results of a prospective, randomized, controlled study. Knee Surg Sports Traumatol Arthrosc. 2008:565–73.

    Article  PubMed  Google Scholar 

  53. Langer F, Czitrom A, Prizker KP, Gross AE. The immunogenicity of fresh and frozen allogeneic bone. J Bone Joint Surg Am. 1975;57:216–22.

    Article  CAS  PubMed  Google Scholar 

  54. Langer F, Gross AE. Immunogenicity of allograft articular cartilage. J Bone Joint Surg Am. 1974;56:297–304.

    Article  CAS  PubMed  Google Scholar 

  55. Bedi A, Feeley BT, Williams RJ 3rd. J Bone Joint Surg Am. 2010;994–1009.

    Google Scholar 

  56. Williams RJ 3rd, Harnly HW. Microfracture: indications, technique, and results. Instr Course Lect. 2007:419–28.

    Google Scholar 

  57. Brown WE, Potter HG, Marx RG, et al. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res. 2004:214–23.

    Article  Google Scholar 

  58. Ramappa AJ, Gill TJ, Bradford CH, et al. Magnetic resonance imaging to assess knee cartilage repair tissue after microfracture of chondral defects. J Knee Surg. 2007:228–34.

    Article  Google Scholar 

  59. McCormick F, Harris JD, Abrams GD, et al. Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy. 2014;30(2):222–6.

    Article  PubMed  Google Scholar 

  60. Orth P, Duffner J, Zurakowski D, Cucchiarini M, Madry H. Small-diameter awls improve articular cartilage after microfracture treatment in a translational animal model. Am J Sports Med. 2015;44(1):209–19.

    Article  PubMed  Google Scholar 

  61. Choi J, Lee K. Comparison of clinical outcomes between arthroscopic subchondral drilling and microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2140–7.

    Article  PubMed  Google Scholar 

  62. Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med. 2014;42(11):2741–50.

    Article  PubMed  Google Scholar 

  63. Zedde P, Cudoni S, Manunta L, et al. Second generation needling techniques for the treatment of chondral defects in animal model. Joints. 2017;5(1):27–33.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gianakos AL, Yasui Y, Fraser EJ, Ross KA, Prado MP, Fortier LA, Kennedy JG. The effect of different bone marrow stimulation techniques on human talar subchondral bone: a micro-computed tomography evaluation. Arthroscopy. 2016;32(10):2110–7.

    Article  PubMed  Google Scholar 

  65. Min BH, Truong MD, Song HK, Cho JH, Park DY, Kweon HJ, Chung JY. Development and Efficacy testing of a “Hollow Awl” that leads to patent bone marrow channells and greater mesenchymal stem cell mobilization during bone marrow stimulation cartilage repair surgery. Arthroscopy. 2017 (Epub ahead of print).

    Google Scholar 

  66. Mistry H, Connock M, Pink J, et al. Autologous chondrocyte implantation in the knee: systemic review and economic evaluation. Health Technol Assess. 2017;21(6):1–294.

    Article  PubMed  Google Scholar 

  67. Aae TF, Randsborg PH, Lurås H, Årøen A, Lian ØB. Microfracture is more cost effective than autologous chondrocyte implantation: a review of level 1 and level 2 studies with 5 year follow-up. Knee Surg Sports Traumatol Arthrosc. 2018;26(4):1044–52.

    PubMed  Google Scholar 

  68. Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral lesions of the knee; average 11-year follow-up. Arthroscopy. 2003;477–84.

    Google Scholar 

  69. Mithoefer K, McAdam T, Williams RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee; an evidence-based systematic analysis. Am J Sports Med. 2009:2053–63.

    Article  PubMed  Google Scholar 

  70. Asik M, Ciftci F, Sen C, et al. The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy. 2008:1214–20.

    Article  Google Scholar 

  71. Gobbi A, Nunag P, Malinowski K. Treatment of full thickness chondral lesions of the knee with microfracture in a group of athletes. Knee Surg Sports Traumatol Arthrosc. 2005:213–21.

    Article  PubMed  Google Scholar 

  72. Weber AE, Locker PH, Mayer EN, et al. Clinical outcomes after microfracture of the knee: midterm follow-up. Orthop J Sports Med. 2018;9(6):2325967117753572.

    Google Scholar 

  73. Mithhoefer K, Williams RJ 3rd, Warren RF, et al. High-impact athletics after knee articular cartilage repair; a prospective evaluation of the microfracture technique. Am J Sports Med. 2006:1413–28.

    Google Scholar 

  74. Solheim E, Hegna J, Inderhaug E, Øyen J, Harlem T, Strand T. Results at 10–14 years after microfracture treatment of articular cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1587–93.

    Article  PubMed  Google Scholar 

  75. Oussedik S, Tsitskaris K, Parker D. Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. Arthroscopy. 2015;31(4):732–44.

    Article  PubMed  Google Scholar 

  76. Sansone V, de Girolamo L, Pascale W, Melato M, Pascale V. Long-term results of abrasion arthroplasty for full-thickness cartilage lesions of the medial femoral condyle. Arthroscopy. 2015;31(3):396–403.

    Article  PubMed  Google Scholar 

  77. Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarthy EC. A cost-effectiveness analysis of surgical treamtent modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Ortho J Sports Med. 2017;5(5):2325967117704634.

    Google Scholar 

  78. Kraeutler MJ, Belk JW, Purcell JM, McCarty EC. Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes. Am J Sports Med. 2018;46(4):995–9.

    Article  PubMed  Google Scholar 

  79. Harris JD, Brophy RH, Siston RA, et al. Treatment of chondral defects in the athletes knee. Arthroscopy. 2010:841–52.

    Article  Google Scholar 

  80. Mithoefer K, Hambly K, Della Villa S, et al. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med. 2009;Suppl 1:167S–76S.

    Google Scholar 

  81. Namdari S, Baldwin K, Anakwenze O, et al. Results and performance after microfracture in national basketball association athletes. Am J Sports Med. 2009:943–8.

    Article  PubMed  Google Scholar 

  82. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 Years. J Bone Joint Surg Am. 2016;98(16):1332–9.

    Article  PubMed  Google Scholar 

  83. Minas T, Gomoll AH, Rosenberger R, et al. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med. 2009:902–908.

    Article  PubMed  Google Scholar 

  84. Zaslav K, Cole B, Brewster R, et al. A Prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee. Am J Sports Med. 2009:42–55.

    Article  PubMed  Google Scholar 

  85. Rosa D, Di Donato SL, Balato G, D’Addona A, Smeraglia F, Correra G, Di Vico G. How to manage a failed cartilage repair: a systematic literature review. Joints. 2017;5(2):93–106.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Demange MK, Minas T, von Keudell A, Sodha S, Bryant T, Gomoll AH. Intralesional osteophyte regrowth following autologous chondrocyte implantation after previous treatment with marrow stimulation technique. Cartilage. 2017;8(2):131–8.

    Article  PubMed  Google Scholar 

  87. Lamplot JD, Schafer KA, Matava MJ. Treatment of failed articular cartilage reconstructive procedures of the knee: a systematic review. Orthop J Sports Med. 2018;6(3).

    Article  Google Scholar 

  88. Levin AS, Angel M, Sgaglione NA. Introduction to osteochondral autograft transplantation. In: Cole BJ, Gomoll AH, editors. Biologic joint reconstruction. Thorofare: Slack Inc.; 2008. p. 93–105.

    Google Scholar 

  89. Brown OL, Morgan CD, Leitman EH. Osteochondral autograft transfer. In: Cole BJ, Gomoll AH, editors. Biologic joint reconstruction. Thorofare: Slack Inc.; 2008. p. 119–127.

    Google Scholar 

  90. Marcacci M, Kon E, Delcogliano M, et al. Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-up. Am J Sports Med. 2007:2014–21.

    Article  PubMed  Google Scholar 

  91. Werner BC, Cosgrove CT, Gilmore CJ, Lyons ML, Miller MD, Brockmeier SF, Diduch DR. Accelerated return to sport after osteochondral autograft plug transfer. Orthop J Sports med. 2017;5(4):2325967117702418.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15–17 years) outcomes after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med. 2018;46(4):826–31.

    Article  PubMed  Google Scholar 

  93. Solheim E, Hegna J, Inderhaug E. Long-term clinical follow-up microfracture versus mosaicplasty in articular cartilage defects of medial femoral condyle. Knee. 2017;24(6):1402–7.

    Article  PubMed  Google Scholar 

  94. Baltzer AW, Arnold JP. Bone-cartilage transplantation from the ipsilateral knee for chondral lesions of the talus. Arthroscopy. 2005:159–66.

    Article  Google Scholar 

  95. Valderrabano V, Leumann A, Rasch H, et al. Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med. 2009;Suppl 1:105S–111S.

    Google Scholar 

  96. Barber FA, Dockery WD. A computed tomography scan assessment of synthetic multiphase polymer scaffolds used for osteochondral defect repair. Arthroscopy. 2011;27(1):60–4.

    Article  PubMed  Google Scholar 

  97. Sgaglione NA, Florence AS. Bone graft substitute failure with giant cell reaction in the treatment of osteochondral lesions of the distal femur: a report of 2 cases with operative revision. Arthroscopy. 2009;25(7):815–9.

    Article  PubMed  Google Scholar 

  98. Fowler DE 3rd, Hart JM, Hart JA, Miller MD. Donor-site giant cell reaction following backfill with synthetic bone material during osteochondral plug transfer. J Knee Surg. 2009;22(4):372–4.

    Article  PubMed  Google Scholar 

  99. Robinson S, Bonner KF, Osteochondral allograft transplantation. In: Insall and Scott’s 5th edition surgery of the knee. Elsevier.

    Google Scholar 

  100. Bonner KF, Bugbee WD. Fresh osteochondral allografts in the knee. In: Miller MD, Cole BJ, editors. Textbook of arthroscopy. Philadelphia: WB Saunders-Elsevier; 2004. p. 611–24.

    Google Scholar 

  101. Cameron JI, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation of the femoral trochlea. Am J Sports Med. 2016;44(3):633–8.

    Article  PubMed  Google Scholar 

  102. Latterman C, Kremser V, Altintas B. Use of fresh osteochondral allografts in the patellofemoral joint. J Knee Surg. 2018;31(3):227–30.

    Article  Google Scholar 

  103. Gracitelli GC, Meric G, Pulido PA, Görtz S, De Young AJ, Bugbee WD. Fresh osteochondral allograft transplantation for isolated patellar cartilage injury. Am J Sports Med. 2015;43(4):879–84.

    Article  PubMed  Google Scholar 

  104. Nielsen ES, McCauley JC, Pulido PA, Bugbee WD. Return to sport and recreational activity after osteochondral allograft transplantation in the knee. Am J Sports Med. 2017;45(7):1608–14.

    Article  PubMed  Google Scholar 

  105. McCarthy MA, Meyer MA, Weber AE, Levy DM, Tilton AK, Yanke AB, Cole BJ. Can competitive athletes return to high-level play after osteochondral allograft transplantation of the knee? Arthroscopy. 2017;33(9):1712–7.

    Article  PubMed  Google Scholar 

  106. Murphy RT, Pennock AT, Bugbee WD. Osteochondral allograft transplantation of the knee in the pediatric and adolescent population. Am J Sports Med. 2014;42(3):635–40.

    Article  PubMed  Google Scholar 

  107. Gracitelli GC, Meric G, Briggs DT, Pulido PA, McCauley JC, Belloti JC, Bugbee WD. Fresh osteochondral allografts in the knee: comparison of primary transplantation versus transplantation after failure of previous subchondral marrow stimulation. Am J Sports Med. 2015;43(4):885–91.

    Article  PubMed  Google Scholar 

  108. Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New Engl J Med. 1994:889–95.

    Article  CAS  PubMed  Google Scholar 

  109. Freedman KB, Fox JA, Cole BJ. Knee cartilage: diagnosis and decision making. In: Miller MD, Cole BJ, editors. Textbook of arthroscopy. Philadelphia: WB Saunders-Elsevier; 2004. p. 555–67.

    Chapter  Google Scholar 

  110. Miller M, Cole BJ. Atlas of chondral injury treatment. Oper Tech Orthop. 2001;11:145–50.

    Article  Google Scholar 

  111. Kent R, Kurtz CA, Bonner KF. Meniscus transplantation. In: Miller M, editors. Operative techniques in orthopaedic surgery. Philadelphia: Williams & Wilkins; 2009.

    Google Scholar 

  112. Montgomery SR, Foster BD, Ngo RD, et al. Trends in the surgical treatment of articular cartilage defects of the knee in the United States. Knee Surg Sports Traumatol Arthrosc. 2014;22(9):2070–5.

    Article  PubMed  Google Scholar 

  113. Schuette HB, Kraeutler MJ, McCarty EC. Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid- to long-term clinical outcomes. Orthop J Sports Med. 2017;5(6):2325967117709250.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Krych AJ, Ayoosh P, King AH, Johnson NR, Stuart MJ, Williams RJ III. Return to sport after surgical management of articular cartilage lesions in the knee: a meta-analysis. Arthroscopy. 2017;25(10):3186–96.

    Google Scholar 

  115. Aubin PP, Cheah HK, Davis AM, Gross AE. Long-term follow up of fresh femoral osteochondral allografts for posttraumatic knee defects. Clin Orthop. 2001;391S:S318–27.

    Article  Google Scholar 

  116. Bugbee WD. Sem Arthroplasty. 2000;11:1–7.

    Google Scholar 

  117. Bugbee WD. Fresh osteochondral allografting. Op Tech in Sports Med. 2000;8(2):158–62.

    Article  Google Scholar 

  118. Garrett J, Wyman J. The operative technique of fresh osteochondral allografting of the knee. Op Tech Orthop. 2001;11(2):132–7.

    Article  Google Scholar 

  119. Lattermann C, Romine SE. Osteochondral allografts: state of the art. Clin Sports Med. 2009;28(2):285–301.

    Article  PubMed  Google Scholar 

  120. Branam BR, Johnson DL. Allografts in knee surgery. Orthopedics. 2007;30(11):925–9.

    PubMed  Google Scholar 

  121. Bonner KF, Bugbee WD. Fresh osteocondral allografts in the knee. In: Miller MD, Cole BJ, editors. Textbook of arthroscopy. Philadelphia: W.B. Saunders-Elsevier; 2004. p. 611–24.

    Chapter  Google Scholar 

  122. Haien Z, Jiachang W, Qiang L, Yufeng M, Zhenwei J. osteochondral autologous transplantation compared to microfracture for treating osteochondral defect: an updated meta-analysis of randomized controlled trials. J Knee Surg. 2018;31(4):341–7.

    Article  PubMed  Google Scholar 

  123. Tírico LEP, McCauley JC, Pulido PA, Bugbee WD. Lesion size does not predict outcomes in fresh osteochondral allograft transplantation. Am J Sports Med. 2018;46(4):900–7.

    Article  PubMed  Google Scholar 

  124. Stevenson S, Dannucci GA, Sharkey NA, Pool RR. The fate of articular cartilage after transplantation of fresh and cryopreserved tissue-antigen-matched and mismatched osteochondral allografts in dogs. J Bone Joint Surg Am. 1989;71:1297–307.

    Article  CAS  PubMed  Google Scholar 

  125. Simon WH, Richardson S, Harman W, Parsons JR, Lane J. Long-term effects of chondrocyte death on rabbit cartilage in vivo. J Bone Joint Surg. 1976;58A:517–26.

    Article  CAS  Google Scholar 

  126. Jackson DW, Halbrecht J, Proctor C, Van Sickle, et al. Assessment of donor cell and matrix survival in fresh articular cartilage allografts in a goat model. J Orthop Res. 1996;14(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  127. Farr J, Gracitelli GC, Shah N, Chang EY, Gomoll AH. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions. Am J Sports Med. 2016;44(8):2015–22.

    Article  PubMed  Google Scholar 

  128. LaPrade RF, Botker J, Herzog M, Agel J. Refrigerated osteoarticualr allografts to treat articular cartilage defects of the femoral condyles. A prospective outcomes study. J Bone Joint Surge Am. 2009;91(4):805–11.

    Google Scholar 

  129. Langer F, Gross AE, West M, Urovitz EP. The immunogenicity of allograft knee joint transplants. Clin Orthop. 1978;132:155–62.

    Google Scholar 

  130. Phipatanakul WP, VandeVord PJ, Teitge RA, Wooley PH. Immune response in patients receiving fresh osteochondral allografts. Am J Orthop. 2004;33(7):345–8.

    PubMed  Google Scholar 

  131. Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med. 1999;18:67–75.

    Article  CAS  PubMed  Google Scholar 

  132. Czitrom AA, Keating S, Gross AE. The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg Am. 1990;72:574–81.

    Article  CAS  PubMed  Google Scholar 

  133. Stevenson S, Horowitz M. Current concepts review: the response to bone allografts. J Bone Joint Surg. 1992;74A:939–50.

    Article  Google Scholar 

  134. Sirlin CB, Brossman J, Boutin RD, Pathria MN, et al. Shell osteochondral allografts of the knee: comparison of MR imaging findings and immunological responses. Radiology. 2001;219(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  135. Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983;174:28–42.

    Google Scholar 

  136. Furukawa T, Eyre DR. Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. J Bone Joint Surg Am. 1980;62:79–89.

    Article  CAS  Google Scholar 

  137. McDermott AG, Langer F, Pritzker PH, Gross AE. Fresh small-fragment osteochondral allografts-Long term follow-up study on first one hundred cases. Clin Orthop. 1985;197:96–102.

    Google Scholar 

  138. Oakeshott RD, Farine I, Pritzker KP, et al. A clinical and histologic analysis of failed fresh osteochondral allografts. Clin Orthop. 1988;233:283–94.

    Google Scholar 

  139. Maury AC, Safir O, Heras FL, Pritzker KP, Gross AE. Twenty-five-year chondrocyte viability in fresh osteochondral allograft: a case report. J Bone Joint Surg Am. 2007;89(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  140. Williams SK, Amiel D, Ball ST, Allen RT, et al. Analysis of cartilage tissue on a cellular level in fresh osteochondral allografts retrievals. Am J Sports Med. 2007;35(12):2022–32.

    Article  PubMed  Google Scholar 

  141. Gross AE, Kim W, Las Heras F, Backstein D, et al. Fresh osteochondral allograft for post-traumatic knee defects: long-term follow-up. Clin Orthop Relat Res. 2008;466(8):1863–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Fitzpatrick PL, Morgan DA. Fresh osteochondral allografts: a 6–10 year review. Aust NZJ Surg. 1998;68(8):573–9.

    Article  CAS  Google Scholar 

  143. Jamali AA, Hatcher SL, You Z. Donor cell survival in a fresh osteochondral allograft at twenty-nine years. A case report. J Bone Joint Surg Am. 2007;89(1):166–9.

    Article  Google Scholar 

  144. Briggs DT, Sadr KN, Pulido PA, Bugbee WD. The use of osteochondral allograft transplantation for primary treatment of cartilage lesions in the knee. Cartilage. 2015;6(4):203–7.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wang D, Kalia V, Eliasberg CD, et al. Osteochondral allograft transplantation of the knee in patients aged 40 years and older. Am J Sports Med. 2018;46(3):581–9.

    Article  PubMed  Google Scholar 

  146. Lamplot JD, Schafer KA, Matava MJ. Treatment of failed articular cartilage reconstructive procedures of the knee: a systematic review. Orthop J Sports Med. 2018;6(3):2325967118761871.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Farr J. Autologous chondrocyte implantation improves patellofemoral cartilage treatment options. Clin Orthop. 2007;463:187–94.

    PubMed  Google Scholar 

  148. Schrock JB, Kraeutler MJ, Houck DA, McQueen MB, McCarthy EC. A cost-effectiveness analysis of surgical treamtent modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Ortho J Sports Med. 2017;5(5):2325967117704634.

    Google Scholar 

  149. Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):3729–35.

    Article  PubMed  Google Scholar 

  150. Knutsen G, Drogset JO, Engebretsen L, et al. A Randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J Bone Joint Surg Am. 2016;98(16):1332–9.

    Article  PubMed  Google Scholar 

  151. Ogura T, Bryant T, Minas T. Long-term outcomes of autologous chondrocyte implantation in adolescent patients. Am J Sports Med. 2017;45(5):1066–74.

    Article  PubMed  Google Scholar 

  152. DiBartola AC, Wright BM, Magnussen RA, Flanigan DC. Clinical outcomes after autologous chondrocyte implantation in adolescents’ knees: a systematic review. Arthroscopy. 2016;32(9):1905–16.

    Article  PubMed  Google Scholar 

  153. Zarkadis NJ, Kusnezov NA, Garcia EJ, Pallis MP, Waterman BR. Return to preoperative function after autologous cartilage implantation of the knee in active military service members. Orthop J Sports Med. 2017;5(5):2325967117706057.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zaslav K, Cole B, Brewster R, et al. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the study of the treatment of articular repair (STAR) clinical trial. Am J Sports Med. 2009;37(1):42–55.

    Article  PubMed  Google Scholar 

  155. Saris DB, Vanlauwe J, Victor J, et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med. 2008;36(2):235–46.

    Article  PubMed  Google Scholar 

  156. Saris DB, Vanlauwe J, Victor J, et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med. 2009;37(Suppl 1):10S–9S.

    Article  PubMed  Google Scholar 

  157. Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee. 2006;13(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  158. Brittberg M, Recker D, Ilgenfritz J, Saris DBF; SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med. 2018:363546518756976(Epub ahead of print).

    Google Scholar 

  159. Mollon B, Kandel R, Chahal J, Theodoropoulos J. The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cartilage. 2013;21(12):1824–33.

    Article  CAS  PubMed  Google Scholar 

  160. Vavken P, Samartzis D. Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials. Osteoarthritis Cartilage. 2010;18(6):857–63.

    Article  CAS  PubMed  Google Scholar 

  161. Moseley JB Jr, Anderson AF, Browne JE, Mandelbaum BR, Micheli LJ, Fu F, Erggelet C. Effectiveness of autologous chondrocyte implantation in cartilage repair of the knee: a systematic review of controlled trials. Am J Sports Med. 2010;38(2):238–46.

    Article  PubMed  Google Scholar 

  162. Kreuz PC, Kalkreich RH, Niemeyer P, Uhl M, Erggelet C. Long-term clinical and mri results of matrix-assisted autologous chondrocyte implantation for articular cartilage defects of the knee. Cartilage. 2018;1:1947603518756463 (Epub ahead of print).

    Google Scholar 

  163. Schuster P, Geßlein M, Schlumberger M, et al. Ten-Year results of medial open-wedge high tibial osteotomy and chondral resurfacing in severe medial osteoarthritis and varus malalignment. Am J Sports Med. 2018:363546518758016 (Epub ahead of print).

    Google Scholar 

  164. Van Den Bekerom M, Patt TW, Kleinhout MY, et al. Early complications after high tibial osteotomy: a comparison of two techniques. J Knee Surg. 2008;21(1):68–74.

    Article  PubMed  Google Scholar 

  165. Fowler DE 3rd, Hart JM, Hart JA, Miller MD. Donor-site giant cell reaction following backfill with synthetic bone material during osteochondral plug transfer. J Knee Surg. 2009;22(4):372–4.

    Article  PubMed  Google Scholar 

  166. Sofu H, Kockara N, Oner A, Camurcu Y, Issin A, Sahin V. Results of hyaluronic acid-based cell-free scaffold application in combination with microfracture for the treatment of osteochondral lesions of the knee: 2-year comparative study. Arthroscopy. 2017;33(1):209–16.

    Article  PubMed  Google Scholar 

  167. Gal L, Orth P, Cucchiarini M, Mary H. Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am J Sports Med. 2017:363546517740575 (Epub ahead of print).

    Google Scholar 

  168. Christensen BB, Olesen ML, Lind M, Foldager CB. Autologous cartilage chip transplantation improves repair tissue composition compared with marrow stimulation. Am J Sports Med. 2017;45(7):1490–6.

    Article  PubMed  Google Scholar 

  169. Tompkins M, Hamann JC, Diduch DR, Bonner KF, Hart JM, Gwathmey FW, Milewski MD, Gaskin CM. Preliminary results of a novel single-stage cartilage restoration technique: particulated juvenile articular cartilage allograft for chondral defects of the patella. Arthroscopy. 2013;29(10):1661–70.

    Article  PubMed  Google Scholar 

  170. Tompkins M, Adkisson HD, Bonner KF. New and emerging techniques in cartilage repair. Oper Tech Sports Med. 2013;21:82–9.

    Article  Google Scholar 

  171. Arshi A, Fabricant PD, Go DE, Williams RJ, McAllister DR, Jones KJ. Can biologic augmentation improve clinical outcomes following microfracture for symptomatic cartilage defects of the knee? A systematic review. Cartilage. 2018;9(2):146–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin O. Aflatooni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aflatooni, J.O., Griffin, J.W., Bonner, K.F. (2019). Articular Cartilage Restoration in the Multiple Ligament Injured Knee. In: Fanelli, G. (eds) The Multiple Ligament Injured Knee. Springer, Cham. https://doi.org/10.1007/978-3-030-05396-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05396-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05395-6

  • Online ISBN: 978-3-030-05396-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics