Skip to main content

Constructing Canonical Strategies for Parallel Implementation of Isogeny Based Cryptography

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2018 (INDOCRYPT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11356))

Included in the following conference series:

Abstract

Isogeny based cryptographic systems are one of the very competitive systems that are potentially secure against quantum attacks. The run time of isogeny based systems are dominated by a sequence of point multiplications and isogeny computations performed over supersingular elliptic curves in a specific order. The order of the sequence play an important role in the run time of the algorithms, and an optimal strategy can be efficiently determined yielding the minimum cost among all possible choices when a single processor is in use. In this paper, we generalize this idea and propose new algorithms that determine strategies for K processors under two different parallelization models: Per-Curve Parallelization (PCP) and Consecutive-Curve Parallelization (CCP). We present several recursive formulation of canonical strategies and their cost under the PCP model. As a result, we show how to construct the best (optimal) strategies under the PCP model. For some cryptographically interesting parameters, we obtain up to 24% (for \(K=2\)), 40% (for \(K=4\)), and 51% (for \(K=8\)) theoretical speed ups over the optimal strategies with one processor. The more general CCP model offers a refinement of PCP, and yields up to 30% (for \(K=2\)), 47% (for \(K=4\)), and 55% (for \(K=8\)) theoretical speed ups over the optimal strategies with one processor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_11

    Chapter  Google Scholar 

  2. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny diffie-hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  3. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Faz-Hernández, A., López, J., Ochoa-Jiménez, E., Rodríguez-Henríquez, F.: A faster software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol. IEEE Trans. Comput. 2017

    Google Scholar 

  5. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_1

    Chapter  Google Scholar 

  6. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic curve isogenies. Quantum Inf. Process. 17(10), 265 (2018)

    Article  MathSciNet  Google Scholar 

  7. Koziel, B., Azarderakhsh, R., Kermani, M., Jao, D.: Post-quantum cryptography on FPGA based on Isogenies on elliptic curves. IEEE Trans. Circuits Syst. 64, 86–99 (2017)

    Article  Google Scholar 

  8. Koziel, B., Azarderakhsh, R., Mozaffari-Kermani, M.: fast hardware architectures for supersingular isogeny diffie-hellman key exchange on FPGA. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 191–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_11

    Chapter  Google Scholar 

  9. Moody, D., Shumow, D.: Analogues of Velu’s formulas for isogenies on alternate models of elliptic curves. Math. Comput. 85(300), 1929–1951 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank our reviewers for their comments and corrections. Research reported in this paper was supported by the Army Research Office under the award number W911NF-17-1-0311. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Hutchinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hutchinson, A., Karabina, K. (2018). Constructing Canonical Strategies for Parallel Implementation of Isogeny Based Cryptography. In: Chakraborty, D., Iwata, T. (eds) Progress in Cryptology – INDOCRYPT 2018. INDOCRYPT 2018. Lecture Notes in Computer Science(), vol 11356. Springer, Cham. https://doi.org/10.1007/978-3-030-05378-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05378-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05377-2

  • Online ISBN: 978-3-030-05378-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics