Skip to main content

Adaptive Multi-objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11353))

Abstract

Automatic algorithm configuration (AAC) is an increasingly critical factor in the design of efficient metaheuristics. AAC was previously successfully applied to multi-objective local search (MOLS) algorithms using offline tools. However, offline approaches are usually very expensive, draw general recommendations regarding algorithm design for a given set of instances, and does generally not allow per-instance adaptation. Online techniques for automatic algorithm control are usually applied to single-objective evolutionary algorithms. In this work we investigate the impact of including control mechanisms to MOLS algorithms on a classical bi-objective permutation flowshop scheduling problem (PFSP), and demonstrate how even simple control mechanisms can complement traditional offline configuration techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002). https://doi.org/10.1023/A:1013689704352

  2. Belluz, J., Gaudesi, M., Squillero, G., Tonda, A.: Operator selection using improved dynamic multi-armed bandit. GECCO 2015, 1311–1317 (2015). https://doi.org/10.1145/2739480.2754712

  3. Blot, A., Hoos, H.H., Jourdan, L., Marmion, M.É., Trautmann, H.: MO-ParamILS: a multi-objective automatic algorithm configuration framework. LION 10, 32–47 (2016)

    Google Scholar 

  4. Blot, A., Jourdan, L., Kessaci-Marmion, M.: Automatic design of multi-objective local search algorithms: case study on a bi-objective permutation flowshop scheduling problem. GECCO 2017, 227–234 (2017)

    Google Scholar 

  5. Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M.É., Hoos, H.H.: Automatically configuring multi-objective local search using multi-objective optimisation. In: Trautmann, H., Rudolph, G., Klamroth, K., Schütze, O., Wiecek, M., Jin, Y., Grimme, C. (eds.) EMO 2017. LNCS, vol. 10173, pp. 61–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_5

    Chapter  Google Scholar 

  6. Burke, E.K., et al..: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013). https://doi.org/10.1057/jors.2013.71

  7. Cesa-Bianchi, N., Fischer, P.: Finite-time regret bounds for the multiarmed bandit problem. ICML 1998, 100–108 (1998)

    Google Scholar 

  8. Dang, N.T.T., Pérez Cáceres, L., Stützle, T., De Causmaecker, P.:Configuring irace using surrogate configuration benchmarks. In: GECCO (2017). https://lirias.kuleuven.be/handle/123456789/583393

  9. Drugan, M.M., Nowé, A.: Designing multi-objective multi-armed bandits algorithms: A study. IJCNN 2013, 1–8 (2013). https://doi.org/10.1109/IJCNN.2013.6707036

    Article  Google Scholar 

  10. Drugan, M.M., Thierens, D.: Path-guided mutation for stochastic pareto local search algorithms. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 485–495. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_49

    Chapter  Google Scholar 

  11. Drugan, M.M., Thierens, D.: Stochastic Pareto local search: pareto neighbourhood exploration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)

    Article  Google Scholar 

  12. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236 (2011)

    Article  MathSciNet  Google Scholar 

  13. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime Pareto local search. Eur. J. Oper. Res. 243(2), 369–385 (2015)

    Article  MathSciNet  Google Scholar 

  14. Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  15. Eiben, A., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter Control in Evolutionary Algorithms. Parameter Setting in Evolutionary Algorithms, pp. 19–46 (2007)

    Google Scholar 

  16. Gai, Y., Krishnamachari, B., Jain, R.: Combinatorial network optimization with unknown variables: multi-armed bandits with linear rewards and individual observations. IEEE/ACM Trans. Netw. 20(5), 1466–1478 (2012). https://doi.org/10.1109/TNET.2011.2181864

    Article  Google Scholar 

  17. Gretsista, A., Burke, E.K.: An iterated local search framework with adaptive operator selection for nurse rostering. LION 11, 93–108 (2017)

    Google Scholar 

  18. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Elsevier, Morgan Kaufmann (2004)

    Google Scholar 

  19. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. LION 5, 507–523 (2011)

    Google Scholar 

  20. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    Article  Google Scholar 

  21. Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

    Article  Google Scholar 

  22. Kuleshov, V., Precup, D.: Algorithms for multi-armed bandit problems (2014). CoRR arXiv:abs/1402.6028

  23. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J. Heuristics 18(2), 317–352 (2012)

    Article  Google Scholar 

  24. López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    Article  MathSciNet  Google Scholar 

  25. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 320–353. Springer (2003)

    Google Scholar 

  26. Marmion, M.-E., Mascia, F., López-Ibáñez, M., Stützle, T.: Automatic design of hybrid stochastic local search algorithms. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.) HM 2013. LNCS, vol. 7919, pp. 144–158. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38516-2_12

    Chapter  Google Scholar 

  27. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

    Article  Google Scholar 

  28. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Metaheuristics for Multiobjective Optimisation, pp. 177–199. Springer (2004)

    Google Scholar 

  29. Rajaraman, K., Sastry, P.S.: Finite time analysis of the pursuit algorithm forlearning automata. IEEE Trans. Syst. Man Cybern. Part B 26(4), 590–598 (1996). https://doi.org/10.1109/3477.517033

  30. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006). https://doi.org/10.1287/trsc.1050.0135

  31. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: A dynamic multiarmed bandit-geneexpression programming hyper-heuristic for combinatorial optimizationproblems. IEEE Trans. Cybern. 45(2), 217–228 (2015). https://doi.org/10.1109/TCYB.2014.2323936

  32. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009). https://doi.org/10.1145/1456650.1456656

  33. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  34. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)

    Article  MathSciNet  Google Scholar 

  35. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. GECCO 2005, 1539–1546 (2005)

    Google Scholar 

  36. Vermorel, J., Mohri, M.: Multi-armed bandit algorithms and empirical evaluation. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 437–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_42

    Chapter  Google Scholar 

  37. Wauters, T., Verbeeck, K., Berghe, G.V., De Causmaecker, P.: Learning agents for the multi-mode project scheduling problem. J. Oper. Res. Soc. 62(2), 281–290 (2011). https://doi.org/10.1057/jors.2010.101

  38. Yahyaa, S.Q., Drugan, M.M., Manderick, B.: Annealing-pareto multi-objective multi-armed bandit algorithm. ADPRL 2014, 1–8 (2014). https://doi.org/10.1109/ADPRL.2014.7010619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Blot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blot, A., Kessaci, MÉ., Jourdan, L., De Causmaecker, P. (2019). Adaptive Multi-objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 12 2018. Lecture Notes in Computer Science(), vol 11353. Springer, Cham. https://doi.org/10.1007/978-3-030-05348-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05348-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05347-5

  • Online ISBN: 978-3-030-05348-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics