Skip to main content

Sintering Mechanisms of Metals Under Electric Currents

  • Chapter
  • First Online:
Spark Plasma Sintering of Materials

Abstract

This chapter concerns the microscopic mechanisms involved in densification of metallic powders submitted to high electric current pulses like in the SPS technique. Because metallic systems exhibit high electric conductivity, focus is made on evaluating the sensitivity of the densification mechanisms on the current. Thus, a first part is devoted to the influence of electric currents on elementary metallurgical phenomena (diffusion, plasticity, etc.) which are involved in densification. Then, after recalling the micromechanical models of densification, the SPS kinetics is described and analyzed in the framework of these models, with emphasis on the role of the current. Finally, theoretical and experimental investigations on electrically induced mechanisms at the scale of the powder particle contacts are presented: dielectric breakdown of oxide layers, arcs and plasma, Joule overheating, electroplasticity, and electromigration. Then, conclusions are drawn on the most probable mechanisms and on the role of the current.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adda Y, Philibert J (1966) La diffusion dans les solides. Institut national des sciences et techniques nucléaires, Saclay

    Google Scholar 

  • Aleksandrova EV, Ilyina AM, Grigoryev EG, Olevsky EA (2015) Contribution of electric current into densification kinetics during spark plasma sintering of conductive powder. J Am Ceram Soc 98:3509–3517

    Google Scholar 

  • Arzt E, Ashby MF, Easterling KE (1983) Practical applications of hot-isostatic pressing diagrams: four case studies. Metall Trans A 14:211–221

    Article  CAS  Google Scholar 

  • Atkinson HV, Davies S (2000) Fundamental aspects of hot-isostatic pressing: an overview. Metall Mater Trans A 31:2981–3000

    Article  Google Scholar 

  • Bernache-Assollant D (1993) Chimie-physique du frittage. Hermès, Paris

    Google Scholar 

  • Bernard-Granger G, Guizard C (2007) Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification. Acta Mater 55:3493–3504

    Article  CAS  Google Scholar 

  • Bertolino N, Garay J, Anselmi-Tamburini U, Munir ZA (2001) Electromigration effects in Al-Au multisayers. Scr Mater 44:737–742

    Google Scholar 

  • Chen CM, Chen SW (1999) Electric current effects on Sn/Ag interfacial reactions. J Electron Mater 28:902–906

    Google Scholar 

  • Chen CM, Chen SW (2000) Electromigration effect upon the Zn/Ni and Bi/Ni interfacial reactions. J Electron Mater 29:1222–1228

    Google Scholar 

  • Chen SW, Chen CM, Liu WC (1998) Electric current effects upon the Sn/Cu and Sn/Ni interfacial reactions. J Electron Mater 27:1193–1199

    Google Scholar 

  • Choi BW, Deng YG, McCullough C, Paden B, Mehrabian R (1990) Densification of rapidly solidified titanium aluminied powders – I. Comparison of experiments to hiping models. Acta Metall Mater 38:2225–2243

    Article  CAS  Google Scholar 

  • Collard C, Trzaska Z, Durand L, Chaix JM, Monchoux JP (2017) Theoretical and experimental investigations of local overheating at particle contacts in spark plasma sintering. Powder Technol 321:458–470

    Article  CAS  Google Scholar 

  • Collet R, Le Gallet S, Naimi F, Charlot F, Lay S, Bonnefont G, Fantozzi G, Chaix JM, Bernard F (2017) Current effect on the sintering by SPS of a pre-oxidized copper powder. J Alloys Compd 692:478–484

    Article  Google Scholar 

  • Conrad H (2000) Effects of electric current on solid state phase transformations in metals. Mater Sci Eng A 287:227–237

    Article  Google Scholar 

  • Conrad H, Karam N, Mannan S, Sprecher AF (1988) Effect of electric current pulses on the recrystallization kinetics of copper. Scr Metall 22:235–238

    Article  CAS  Google Scholar 

  • Conrad H, Sprecher AF, Cao WD, Lu XP (1990) Electroplasticity – the effect of electricity on the mechanical properties of metals. JOM 42:28–33

    Article  CAS  Google Scholar 

  • Davies GC, Jones DRH (1997) Creep of metal-type organic compounds – IV. Application to hot isostatic pressing. Acta Mater 45:775–789

    Article  CAS  Google Scholar 

  • Diouf JS, Fedrizzi A, Molinari A (2013) A fractographic and microstructural analysis of the neck regions of coarse copper particles consolidated by SPS. Powder Technol 221:220–227

    Article  Google Scholar 

  • Duszczyk J, Zhuang LZ, Buekenhout L (1998) Densification of a rapidly solidified nickel aluminide powder – I. Application of hot-isostatic pressing diagrams. J Mater Sci 33:2735–2743

    Article  CAS  Google Scholar 

  • Frankovic R (1996) Electromigration drift and threshold in Cu thin-film interconnect. IEEE Trans Electron Devices 43:2233–2239

    Article  CAS  Google Scholar 

  • Frei JM, Anselmi-Tamburini U, Munir ZA (2007) Current effects on neck growth in the sintering of copper spheres to copper plates by the pulsed electric current method. J Appl Phys 101:114914

    Article  Google Scholar 

  • Friedman JR, Garay JE, Anselmi-Tamburini U, Munir ZA (2004) Modified interfacial reactions in the Ag-Zn multilayers under the influence of high DC currents. Intermetallics 12:589–597

    Google Scholar 

  • Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni-Ti system by current effects. Acta Mater 51:4487–4495

    Google Scholar 

  • Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287:171–177

    Article  Google Scholar 

  • Guan L, Tang G, Chu PK (2010) Recent advances and challenges in electroplastic manufacturing processing of metals. J Mater Res 25:1215–1224

    Article  CAS  Google Scholar 

  • Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams: new developments. Acta Metall 33:2163–2174

    Article  CAS  Google Scholar 

  • Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60:835–838

    Article  CAS  Google Scholar 

  • Ji G, Grosdidier T, Bozzolo N, Launois S (2007) The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering. Intermetallics 15:108–118

    Article  CAS  Google Scholar 

  • Liu WC, Chen SW, Chen CM (1998) Finite-element analysis of current-induced thermal stress in a conducting sphere. J Electron Mater 27:L5

    Google Scholar 

  • Martins D, Grumbach F, Manière C, Sallot P, Mocellin K, Bellet M, Estournès C (2017) In-situ creep law determination for modeling spark plasma sintering of TiAl 48-2-2 powder. Intermetallics 86:147–155

    Article  CAS  Google Scholar 

  • Misawa T, Shikatani N, Kawakami Y, Enjoji T, Ohtsu Y, Fujita H (2009) Observation of internal pulsed current flow through the ZnO specimen in the spark plasma sintering method. J Mater Sci 44:1641–1651

    Article  CAS  Google Scholar 

  • Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777

    Article  CAS  Google Scholar 

  • Nowak S, Perrière L, Dembinski L, Tusseau-Nenez S, Champion Y (2011) Approach of the spark plasma sintering mechanism in Zr57Cu20Al10Ni8Ti5 metallic glass. J Alloys Compd 509:1011–1019

    Article  CAS  Google Scholar 

  • Okazaki K (2000) Electro-discharge consolidation applied to nanocrystalline and RSP/MA powders. Mater Sci Eng A 287:189–197

    Google Scholar 

  • Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R 23:41–100

    Article  Google Scholar 

  • Omori M (2000) Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A 287:183–188

    Article  Google Scholar 

  • Orru R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63:127–287

    Article  Google Scholar 

  • Rahaman MN (2003) Ceramic processing and sintering. Taylor and Francis, Boca Raton

    Google Scholar 

  • Saunders T, Grasso S, Reece MJ (2015) Plasma formation during electric discharge (50 V) through conductive powder compacts. J Eur Ceram Soc 35:871–877

    Article  CAS  Google Scholar 

  • Shewmon P (1989) Diffusion in solids. The Minerals, Metals and Materials Society, Warrendale

    Google Scholar 

  • Song X, Liu X, Zhang J (2006) Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc 89:494–500

    Article  CAS  Google Scholar 

  • Sprecher AF, Mannan SL, Conrad H (1986) On the mechanisms for the electroplastic effect in metals. Acta Metall 34:1145–1162

    Article  CAS  Google Scholar 

  • Tokita M (1999) Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering. Mater Sci Forum 308–311:83–88

    Article  Google Scholar 

  • Trapp J, Kieback B (2015) Temperature distribution in metallic powder particles during initial stage of field-activated sintering. J Am Ceram Soc 98:3547–3552

    Article  CAS  Google Scholar 

  • Trzaska Z, Monchoux JP (2015) Electromigration experiments by spark plasma sintering in the silver-zinc system. J Alloys Compd 635:142–149

    Article  CAS  Google Scholar 

  • Trzaska Z, Couret A, Monchoux JP (2016) Spark plasma sintering mechanisms at the necks between TiAl powder particles. Acta Mater 118:100–108

    Article  CAS  Google Scholar 

  • Trzaska Z, Bonnefont G, Fantozzi G, Monchoux JP (2017) Comparison of densification kinetics of a TiAl powder by spark plasma sintering and hot pressing. Acta Mater 135:1–13

    Article  CAS  Google Scholar 

  • Trzaska Z, Cours R, Monchoux JP (2018) Densification of Ni and TiAl by SPS: kinetics and microscopic mechanisms. Metall Mater Trans A. https://doi.org/10.1007/s11661-018-4775-0. in press

  • Voisin T, Durand L, Karnatak N, Le Gallet S, Thomas M, Le Berre Y, Castagné JF, Couret A (2013) Temperature control during Spark Plasma Sintering and application to up-scaling and complex shaping. J Mater Process Technol 213:269–278

    Article  CAS  Google Scholar 

  • Wang CH, Kuo CY, Chen HH, Chen SW (2011) Effect of current density and temperature on Sn/Ni interfacial reactions under current stressing. Intermetallics 19:75–80

    Google Scholar 

  • Wei X, Back C, Izhvanov O, Khasanov OL, Haines CD, Olevsky EA (2015) Spark plasma sintering of commercial zirconium carbide powders: densification behavior and mechanical properties. Materials 8:6043–6061

    Article  CAS  Google Scholar 

  • Xiong Y, Liu D, Li Y, Zheng B, Haines C, Paras J, Martin D, Kapoor D, Lavernia EJ, Schoenung JM (2012) Spark plasma sintering of cryomilled nanocrystalline Al alloy – Part I: microstructure evolution. Metall Mater Trans A 43:327–339

    Article  CAS  Google Scholar 

  • Yanagisawa O, Kuramoto H, Matsugi K, Komatsu M (2003) Observation of particle behavior in copper powder compact during pulsed electric discharge. Mater Sci Eng A 350:184–189

    Article  Google Scholar 

  • Ye J, Ajdelsztajn L, Schoenung J (2006) Bulk nanocrystalline aluminum 5083 alloy fabricated by a novel technique: cryomilling and spark plasma sintering. Metall Mater Trans A 37:2569–2579

    Google Scholar 

  • Zhao J, Garay JE, Anselmi-Tamburini U, Munir ZA (2007) Directional electromigration-enhanced interdiffusion in the Cu-Ni system. J Appl Phys 102(2007):114902

    Google Scholar 

  • Zhou Y, Wang Q, Sun DL, Han XL (2011) Co-effect of heat and direct current on growth of intermetallic layers at the interface of Ti-Ni diffusion couples. J Alloys Compd 509:1201–1205

    Google Scholar 

  • Zhu YH, To S, Lee WB, Liu XM, Jiang YB, Tang GY (2009) Effects of dynamic electropulsing on microstructure and elongation of a Zn–Al alloy. Mater Sci Eng A 501:125–132

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the MF2-ANR-2011-PBS09-020 project of the French “Agence Nationale de la Recherche.” The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Monchoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monchoux, JP. (2019). Sintering Mechanisms of Metals Under Electric Currents. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_4

Download citation

Publish with us

Policies and ethics