Skip to main content

Spark Plasma Sintering of Ultrahigh Temperature Ceramics

  • Chapter
  • First Online:
Spark Plasma Sintering of Materials

Abstract

The ultrahigh-temperature ceramics (UHTCs) have been considered as the emerging class of materials, suitable for the high-temperature (exceeding 2000 °C) structural applications in oxidation environment, including hypersonic aviation, rocket propulsion, high-temperature electrodes for furnaces, etc. As UHTCs have higher melting point (>3000 °C), it is worthwhile to adopt novel sintering techniques to fabricate the structural frames from UHTCs powder for different niche applications. Effective utilization of UHTCs requires full densification of the materials from powder. UHTCs, especially, transition metal borides and carbides, have lower sinterability due to their high melting point (>3000 °C), strong covalent bonding, low bulk diffusion coefficient, and higher vapor pressure of the constituent elements present in the UHTCs. Among the available sintering techniques, spark plasma sintering (SPS) has been widely utilized to achieve fully dense powder compact along with uniform fine-grain microstructure, suitable for high-temperature applications. SPS is found to be advantageous over the conventional sintering techniques such as hot pressing (HP), hot isostatic pressing (HIP), pressureless sintering (PS), etc. because uniform fine-grain microstructure could be obtained via SPS due to considerably lower sintering temperature, high heating rate, lower holding time, and application of pulsed DC current along with uniaxial mechanical pressure during sintering schedule. In this chapter, the efficacy of SPS technique to sinter different UHTCs, especially monolithic transition metal borides, carbides, and mixed borides and carbides with/without sinter-aid or other secondary phase is elaborated. Microstructural evolution and enhancement of different properties, particularly the mechanical properties, by adopting suitable sintering scheme and sintering parameters are discussed in detail. Also, entropy-stabilized multicomponent UHTC borides (contains at least five transition metal borides in equimolar ratio) have been discussed to highlight the effectiveness of SPS technique to consolidate these types of materials. Finally, the application-oriented development of UHTCs for sharp leading edges of hypersonic space vehicle is briefed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrazak H, Schoenstein F, Abdellaoui M, Jouini N (2011) Spark plasma sintering consolidation of nanostructured TiC prepared by mechanical alloying. Int J Refract Met Hard Mater 29:170–176

    Article  CAS  Google Scholar 

  • Akin MH, Sahin FC, Yucel O, Goller G, Goto T (2009) Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering. J Eur Ceram Soc 29:2379–2385

    Article  CAS  Google Scholar 

  • Andrievskii RA, Lanin AG, Rymashevskii GA (1974) Strength of refractory compounds. Metallurgiya, Moscow [in Russian]

    Google Scholar 

  • Antis GR, Chantikul P, Lawn BR, Marshall DB (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 64:533–538

    Article  Google Scholar 

  • Baik S, Becher PF (1987) Effect of oxygen contamination on densification of TiB2. J Am Ceram Soc 70:527–530

    Article  CAS  Google Scholar 

  • Balci Ö, Ağaoğulları D, Muhaffel F, Öveçoğlu ML, Çimenoğlu H, Duman I (2016a) Effect of sintering techniques on the microstructure and mechanical properties of niobium borides. J Eur Ceram Soc 36:3113–3123

    Article  CAS  Google Scholar 

  • Balci O, Ağaoğulları D, Öveçoğlu ML, Duman I (2016b) Synthesis of niobium borides by powder metallurgy methods using Nb2O5, B2O3 and Mg blends. Trans Nonferrous Metals Soc China 26:747–758

    Article  CAS  Google Scholar 

  • Basu B (2005) Toughening of yttria-stabilized tetragonal zirconia ceramics. Int Mater Rev 50:239–256

    Article  CAS  Google Scholar 

  • Basu B, Balani K (2011) Advanced structural ceramics. Wiley, USA, American Ceramic Society, Hoboken

    Book  Google Scholar 

  • Basu B, Vleugels J, Biest VDO (2002) Development of ZrO2-ZrB2 composites. J Alloys Compd 334:200–204

    Article  CAS  Google Scholar 

  • Baumgartner HR, Steiger RA (1984) Sintering and properties of titanium diboride made from powder synthesized in a plasma-arc heater. J Am Ceram Soc 67:207–212

    Article  CAS  Google Scholar 

  • Berardan D, Franger S, Dragoe D, Meena AK, Dragoe N (2016) Colossal dielectric constant in high entropy oxides. Phys Status Solidi RRL 10:328–333

    Article  CAS  Google Scholar 

  • Bhaumik SK, Divakar C, Singh AK, Upadhyaya GS (2000) Synthesis and sintering of TiB2 and TiB2–TiC composite under high pressure. Mater Sci Eng A 279:275–281

    Article  Google Scholar 

  • Bohrk H, Lohle S, Fuchs U, Elsaber H, Weihs H (2011) FinEx-Fin Experiment On HIFIRE-5, 7th Symposium on Aerothermodynamics for Space Vehicles, Brugge

    Google Scholar 

  • Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006a) Low-temperature densification of zirconium diboride ceramics by reactive hot pressing. J Am Ceram Soc 89:3638–3645

    Article  CAS  Google Scholar 

  • Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006b) Pressureless sintering of zirconium diboride. J Am Ceram Soc 89:450–456

    Article  CAS  Google Scholar 

  • Chen L, Gu Y, Qian Y, Shi L, Yang Z, Ma J (2004) A facile one-step route to nanocrystalline TiB2 powders. Mater Res Bull 39:609–613

    Article  CAS  Google Scholar 

  • Cheng L, Xie Z, Liu G, Liu W, Xue W (2012) Densification and mechanical properties of TiC by SPS-effects of holding time, sintering temperature and pressure condition. J Eur Ceram Soc 32:3399–3406

    Article  CAS  Google Scholar 

  • Chernysheva OF, Sinel’nikova VS, Kosolapova TY (1979) Structure and properties of alloys of the system TiC–B. Inorg Mater (USSR) 15:614–617

    CAS  Google Scholar 

  • Cripps ACF (2004) Nanoindentation, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Demirskyi D, Sakka Y, Vasylkiv O (2015) High-temperature reactive spark plasma consolidation of TiB -NbC ceramic composites. Ceram Int 41:10828–10834

    Google Scholar 

  • Demirskyi D, Vasylkiv O (2017) Materials flexural strength behavior of a ZrB2-TaB2 composite consolidated by non-reactive spark plasma sintering at 2300°C. Int J Refract Met Hard Mater 66:31–35

    Article  CAS  Google Scholar 

  • Demirskyi D, Nishimura T, Sakka Y, Vasylkiv O (2016) High-strength TiB2-TaC ceramic composites prepared using reactive spark plasma consolidation. Ceram Int 42:1298–1306

    Article  CAS  Google Scholar 

  • Dewan MAR, Zhang G, Ostrovski O (2009) Carbothermal reduction of titania in different gas atmospheres. Metall Mater Trans B Process Metall Mater Process Sci 40B:62–69

    Article  CAS  Google Scholar 

  • Dolvin D (2016) High speed flight research insight briefing, USAF AFOSR Industry Program Review, 2016-0746,0747 & 0748.

    Google Scholar 

  • El-Eskandarany MS (2000) Structure and properties of nanocrystalline TiC full-density bulk alloy consolidated from mechanically reacted powders. J Alloys Compd 305:225–238

    Article  CAS  Google Scholar 

  • Fahrenholtz WG (2003) Reactive hot pressing of Al2O3–Ni composites. J Mater Sci 38:3073

    Article  CAS  Google Scholar 

  • Fahrenholtz WG, Binner J, Zou J (2016) Synthesis of ultra-refractory transition metal diboride compounds. J Mater Res 31:2757–2772

    Article  CAS  Google Scholar 

  • Gild J, Zhang Y, Harrington T, Jiang S, Hu T, Quinn MC, Mellor WM, Zhou N et al (2016) High-entropy metal Diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 6:2–11

    Article  CAS  Google Scholar 

  • Gu Y, Qian Y, Chen L, Zhou FA (2003) Mild solvothermal route to nanocrystalline titanium diboride. J Alloys Compd 352:325–327

    Article  CAS  Google Scholar 

  • Guo S, Hu C, Kagawa Y (2011) Mechanochemical processing of nanocrystalline zirconium diboride powder. J Am Ceram Soc 94:3643

    Article  CAS  Google Scholar 

  • Gupta N, Mukhopadhyay A, Pavani K, Basu B (2012) Spark plasma sintering of novel ZrB2-SiC-TiSi2 composites with better mechanical properties. Mater Sci Eng A 534:111–118

    Article  CAS  Google Scholar 

  • Haga EM, Scott WD (1988) Sintering and mechanical properties of ZrC-ZrO2 composites. J Mater Sci 23:2865–2870

    Article  Google Scholar 

  • İpekçi M, Acar S, Elmadağlı M, Hennicke J, Balcı O, Somer O (2017) Production of TiB2 by SHS and HCl leaching at different temperatures: characterization and investigation of sintering behavior by SPS. Ceram Int 43(2):2039–2045

    Article  CAS  Google Scholar 

  • Jeng YL, Lavernia EJ (1994) Processing of molybdenum disilicide. J Mater Sci 29:2557–2571

    Article  Google Scholar 

  • Jung HJ, Sohn Y, Sung HG, Hyun HS, Shin WG (2015) Physicochemical properties of ball milled boron particles: dry versus wet ball milling process. Powder Technol 269:548

    Article  CAS  Google Scholar 

  • Kamiya A, Nakano K, Okuda H (1989) Fabrication and properties of SiC whisker reinforced NbC composites. J Cerma Soc Jpn 97:947–953

    Article  CAS  Google Scholar 

  • Kang SH, Kim DJ, Kang ES, Baek SS (2001) Pressureless sintering and properties of titanium diboride ceramics containing chromium and iron. J Am Ceram Soc 84:893–895

    Article  CAS  Google Scholar 

  • Karthiselva S, Bakshi S (2016) Reactive spark plasma sintering and mechanical properties of zirconium Diboride–titanium Diboride ultrahigh temperature ceramic solid solutions. Technologies 4:30

    Article  Google Scholar 

  • Königshofer R, Fürnsinn S, Steinkellner P, Lengauer W, Haas R, Rabitsch K, Scheerer M (2005) Solid-state properties of hot-pressed TiB2ceramics. Int J Refract Met Hard Mater 23:350–357

    Article  CAS  Google Scholar 

  • Lawn BR (1993) Fracture of brittle solids. Cambridge University press, New York, pp 263–276

    Book  Google Scholar 

  • Lawn BR, Fuller ER (1975) Equilibrium penny-like cracks in indentation fracture. J Mater Sci 10:2016–2024

    Article  CAS  Google Scholar 

  • Licheri RO, Musa C, Cao G (2008) Combination of SHS and SPS techniques for fabrication of fully dense ZrB2-ZrC-SiC composites. Mater Lett 62:432–435

    Article  CAS  Google Scholar 

  • Licheri R, Musa C, Orrù R, Cao G (2015) Influence of the heating rate on the in situ synthesis and consolidation of ZrB2 by reactive spark plasma sintering. J Eur Ceram Soc 35:1129–1137

    Article  CAS  Google Scholar 

  • Lu FK, Marren D (2002) Principles of hypersonic test facility development. Prog Astronaut Aeronaut 198:17–28

    Google Scholar 

  • Maeda H, Yoshikawa Y, Kusakabe K, Morooka S (1994) Synthesis of ultrafine NbB2 powder by rapid carbothermal reduction in a vertical reactor. J Alloys Compd 215:127–134

    Article  CAS  Google Scholar 

  • Maity TN, Biswas K, Basu B (2018) Critical role of ZrO2 on densification and microstructure development in spark plasma sintered NbB2. Acta Mater. 152:215–228

    Google Scholar 

  • Matsudaira T, Itoh H, Naka S, Hamamoto H (1989) Synthesis of niobium boride powder by solid state reaction between niobium and amorphous boron. J Less-Common Met 155(2):207–214

    Article  CAS  Google Scholar 

  • McKenna PM (1936) Tantalum carbide its relation to other hard refractory compounds. Ind Eng Chem 28(7):767–772

    Article  CAS  Google Scholar 

  • Monteverde F, Bellosi A, Guicciardi S (2002) Processing and properties of zirconium diboride based composites. J Eur Ceram Soc 22:279–288

    Article  CAS  Google Scholar 

  • Monteverde F, Guicciardi S, Bellosi A (2003) Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Mater Sci Eng A 346:31–319

    Article  Google Scholar 

  • Mukhopadhyay A, Raju GB, Basu B, Suri AK (2009) Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics. J Eur Ceram Soc 29:505–516

    Article  CAS  Google Scholar 

  • Mukhopadhyay A, Venkateswaran T, Basu B (2013) Spark plasma sintering may lead to phase instability and inferior mechanical properties: a case study with TiB2. Scr Mater 69:159–164

    Article  CAS  Google Scholar 

  • Muraoka Y, Yoshinaka M, Hirota K, Yamaguchi O (1996) Hot isostatic pressing of TiB2-ZrO2 (2 Mol% Y2O3) composite powders. Mater Res Bull 31:787–792

    Article  CAS  Google Scholar 

  • Murthy TSRC, Sonber JK, Subramanian C, Fotedar RK, MR G, Suri AK (2009) Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2. Int J Refract Met Hard Mater 27:976–984

    Article  CAS  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  • Peshev P, Leyarovska L, Bliznakov G (1968) On the borothermic preparation of some vanadium, niobium and tantalum borides. J Less-Common Met 15:260–267

    Article  Google Scholar 

  • Pierson HO (1996) Handbook of refractory carbides and nitrides. William Andrew Publishing/Noyes, Westwood, p 68

    Google Scholar 

  • Ping L, Shijie D, Anzhuo Y, Shixuan S, Zhixiong X, Zhong Z, Wei Y (2016) ZrB2-TiB2 nanocomposite powder prepared by mechanical alloying. Rare Met Mater Eng 45:1381–1385

    Article  Google Scholar 

  • Platt P, Frankel P, Gass M, Howells R, Preuss M (2014) Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys. J Nucl Mater 454:290–297

    Article  CAS  Google Scholar 

  • Post B, Glaser FW, Moskowitz D (1954) Transition metal diborides. Acta Metall 2:20–25

    Article  CAS  Google Scholar 

  • Purwar A, Basu (2017) Thermo-structural design of ZrB2-SiC based thermal protection system for hypersonic space vehicles. J Am Ceram Soc 100(4):1618–1633

    Article  CAS  Google Scholar 

  • Purwar A, Mukherjee R, Ravikumar K, Ariharan S, Gopinath NK, Basu B (2016) Development of ZrB2-SiC-Ti by multi stage spark plasma sintering at 1600°C. J Cerma Soc Jpn 124(4):393–402

    Article  CAS  Google Scholar 

  • Purwar A, Venkateshwaran T, Basu B (2017) Experimental and computational analysis of thermo-oxidative-structural stability of ZrB2-SiC-Ti composite during arc-jet testing. J Am Ceram Soc 100(10):4860–4873

    Article  CAS  Google Scholar 

  • Raju GB, Basu B (2007) Densification, sintering reactions, and properties of titanium diboride with titanium disilicide as a sintering aid. J Am Ceram Soc 90:3415–3423

    Article  CAS  Google Scholar 

  • Raju GB, Biswas K, Mukhopadhyay A, Basu B (2009) Densification and high temperature mechanical properties of hot pressed TiB2-(0–10wt. %) MoSi2 composites. Scr Mater 61:674–677

    Article  CAS  Google Scholar 

  • Ran S, Biest DVO, Vleugels J (2010) ZrB2 powders synthesis by borothermal reduction. J Am Ceram Soc 93:1586–1590

    CAS  Google Scholar 

  • Reddy KM, Kumar N, Basu B (2010a) Inhibition of grain growth during the final stage of multi-stage spark plasma sintering of oxide ceramics. Scr Mater 63:585–588

    Article  CAS  Google Scholar 

  • Reddy KM, Kumar N, Basu B (2010b) Innovative multi-stage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics. Scr Mater 62:435–438

    Article  CAS  Google Scholar 

  • Reddy KM, Mukhopadhyay A, Basu B (2010c) Microstructure-mechanical-tribological property correlation of multistage spark plasma sintered tetragonal ZrO2. J Eur Ceram Soc 30:3363–3375

    Article  CAS  Google Scholar 

  • Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP (2015) Entropy-stabilized oxides. Nature Comm 6:8485

    Article  CAS  Google Scholar 

  • Sairam K, Sonber JK, Murthy TSRC, Subramanian C, Fotedar RK, Hubli RC (2014) Reaction spark plasma sintering of niobium diboride. Int J Refract Met Hard Mater 43:259–262

    Article  CAS  Google Scholar 

  • Sciti D, Monteverde F, Guicciardi S, Pezzotti G, Bellosi A (2006) Microstructure and mechanical properties of ZrB2-MoSi2 ceramic composites produced by different sintering techniques. Mater Sci Eng A 434:303–309

    Article  CAS  Google Scholar 

  • Sciti D, Guicciardi D, Nygren M (2008a) Spark plasma sintering and mechanical behaviour of ZrC-based composites. Scr Mater 59:638–641

    Article  CAS  Google Scholar 

  • Sciti D, Silvestroni L, Celotti G, Melandri C, Guicciardi S (2008b) Sintering and mechanical properties of ZrB2-TaSi2 and HfB2-TaSi2 ceramic composites. J Am Ceram Soc 91:3285–3291

    Article  CAS  Google Scholar 

  • Shen Z, Nygren M (2005) Microstructural prototyping of ceramics by kinetic engineering: applications of spark plasma sintering. Chem Rec 5:173–184

    Article  CAS  Google Scholar 

  • Solvas EZ, Jayaseelan DD, Lin HT, Brown P, Lee WE (2013) Mechanical properties of ZrB2 and HfB2 based ultra-high temperature ceramics fabricated by spark plasma sintering. J Eur Ceram Soc 33:1373–1386

    Article  CAS  Google Scholar 

  • Subramanian C, Murthy TSRC, Suri AK (2007) Synthesis and consolidation of titanium diboride. Int J Refract Met Hard Mater 25:345–350

    Article  CAS  Google Scholar 

  • Sulima I, Jaworska L, Pałka P, Hyjek P, Kurtyka P (2016) Influence of sintering temperature and CrB2 addition on properties of titanium diboride produced by spark plasma sintering. Polish Soc Compos Mater 16:30–36

    CAS  Google Scholar 

  • Sun SK, Zhang GJ, Wu WW, Liu JX, Suzuki T, Sakka Y (2013) Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures. Scr Mater 69:139–142

    Article  CAS  Google Scholar 

  • Tanaka K (1987) Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model. J Mater Sci 22:1501–1508

    Article  Google Scholar 

  • Tazuddin GNP, Biswas K (2017) In the quest of multicomponent multi-principle high entropy alloys. J Alloys Compd 697:434–442

    Article  CAS  Google Scholar 

  • Telle R, Meyer S, Petzow G, Franz ED (1988) Sintering behaviour and phase reactions of TiB2 with ZrO2 additives. Mater Sci Eng A 105/106:125–129

    Article  Google Scholar 

  • Tsai MH, Yeh JW (2014) High-entropy alloys: a critical review. Math Res Lett 2:107–123

    Article  CAS  Google Scholar 

  • Murthy TSR, Basu B, Balasubramaniam R, Suri AK, Subramanian C, Fotedar RK (2006) Processing and properties of TiB2 with MoSi2 sinter-additive: a first report. J Am Ceram Soc 89:131–138

    Article  CAS  Google Scholar 

  • Tsuchida T, Yamamoto S (2007) Spark plasma sintering of ZrB2-ZrC powder mixtures synthesized by MA-SHS in air. J Mater Sci 42:772–778

    Article  CAS  Google Scholar 

  • Vasylkiv O, Borodianska H, Badica P, Grasso S, Sakka Y, Tok A, Su LT, Bosman M, Ma J (2012) High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering. J Nanosci Nanotechnol 12:959–965

    Article  CAS  Google Scholar 

  • Venkateswaran BB, Raju GB, Kim DY (2006) Densification and properties of transition metal borides-based cermets via spark plasma sintering. J Eur Ceram Soc 26:2431–2440

    Article  CAS  Google Scholar 

  • Wang W, Fu Z, Wang H, Yuan R (2002) Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics. J Eur Ceram Soc 22:1045–1049

    Article  CAS  Google Scholar 

  • Wen G, Li SB, Zhang BS, Guo ZX (2001) Reaction synthesis of TiB2–TiC composites with enhanced toughness. Acta Mater 49:1463–1470

    Article  CAS  Google Scholar 

  • Woydt M, Mohrbacher H (2015) The use of niobium carbide (NbC) as cutting tools and for wear resistant tribosystems. Int J Refract Met Hard Mater 49:212–218

    Article  CAS  Google Scholar 

  • Wu WW, Zhang GJ, Sakka Y (2013) Nanocrystalline ZrB2 powders prepared by mechanical alloying. J Asian Ceramic Soc 1:304–307

    Article  Google Scholar 

  • Yu G, Tkachenko SS, Ordan’yan DZ, Yurchenko VK, Yulyugin GA, Bovkun VI, Unrod (1979) Strength and antifriction properties of alloys of the systems MIVC–MIVB2 over a wide range of component concentrations. Inorg Mater (USSR) 15:704–708

    Google Scholar 

  • Zhang ZH, Shen XB, Wang FC, Lee SK, Wang L (2010) Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB2 ceramics. Mater Sci Eng A 527:5947–5951

    Article  CAS  Google Scholar 

  • Zhang ZH, Shen XB, Wang FC, Lee SK, Fan QB, Cao MS (2012) Low-temperature densification of TiB2 ceramic by the spark plasma sintering process with Ti as a sintering aid. Scr Mater 66:167–170

    Article  CAS  Google Scholar 

  • Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93

    Article  CAS  Google Scholar 

  • Zhao H, He Y, Jin Z (1995) Preparation of zirconium boride powder. J Am Ceram Soc 78:2534–2536

    Article  CAS  Google Scholar 

  • Zhao Y, Wang LJ, Zhang GJ, Jiang W, Chen LD (2008) Effect of holding time and pressure on properties of ZrB2–SiC composite fabricated by the spark plasma sintering reactive synthesis method. Int J Refract Met Hard Mater 27:177–180

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishanu Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maity, T.N., Gopinath, N.K., Biswas, K., Basu, B. (2019). Spark Plasma Sintering of Ultrahigh Temperature Ceramics. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_13

Download citation

Publish with us

Policies and ethics