Skip to main content

Microstructural Evolution and Related Kinetics During Pulsed Electric Current Sintering of Tungsten

  • Chapter
  • First Online:

Abstract

Tungsten powders with average powder sizes of 90 nm, 260 nm, and 471 nm were consolidated by spark plasma sintering (SPS) or pulsed electric current sintering (PECS) at heating rates that ranged from 20 to 100 K/min and applied stresses (20–80 MPa). PECS is found to create a much fine microstructure. However, achieving a density greater than 97% theoretically proved to be difficult to attain due to the limitations in the mechanical strength of the graphite dies. Subsequently, hot isostatic pressing (HIP) was pursued as a post-processing technique to achieve further densification and successfully demonstrated its ability to complete the densification process while not increasing the average grain size over that of the PECS-only method. Dynamic kinetic analyses showed that overall consolidation mechanisms of PECS were quite similar to traditional sintering methods and are based on diffusion and dislocation-based forms of creep. The study confirms that PECS is capable of producing fine-grain tungsten microstructures, which could be advantageous for applications where enhanced mechanical properties are required.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andelin RL, Knight JD, Khan D (1965) Diffusion of tungsten and rhenium tracers in tungsten. Trans AIME 233:19–24

    CAS  Google Scholar 

  • Anderson KR, Groza JR, Fendorf M, Echer CJ (1999) Surface oxide debonding in field assisted powder sintering. Mater Sci Eng A270:278–282

    Article  CAS  Google Scholar 

  • Argonne National Laboratory (1968) Nuclear Rocket Program (NTR) Terminal Report, ANL-7236

    Google Scholar 

  • Ashby MF (1974) A first report on deformation mechanism maps. Acta Metall 22:275–289

    Article  CAS  Google Scholar 

  • Barbour JP, Charbonnier FM, Dolan WW, Dyke WP, Martin EE, Trolan JK (1960) Determination of the surface tension and surface migration constants for tungsten. Phys Rev 117(6):1452–1459

    Article  CAS  Google Scholar 

  • Baum EM, Knox HD, Miller TR (2002) Nuclides and isotopes: chart of the nuclides. Knolls Atomic Power Laboratory, Niskayuna

    Google Scholar 

  • Bernard-Granger G, Addad A, Fantozzi G, Bonnefont G, Guizard C, Vernat D (2010) Spark plasma sintering of commercially available granulated zirconia powder: comparison with hot-pressing. Acta Mater 58:3390–3399

    Article  CAS  Google Scholar 

  • Bettler PC, Charbonnier FM (1960) Activation energy for the surface migration of tungsten in the presence of a high electric field. Phys Rev 119(1):85–93

    Article  CAS  Google Scholar 

  • Bowder FP, Singer KE (1969) Surface self-diffusion of tungsten. Nature 222(5197):977–979

    Article  Google Scholar 

  • Coble RL (1970) Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J Appl Phys 41:4798–4807

    Article  Google Scholar 

  • Conway JB, Flagella PN (1968) Physical and mechanical properties of reactor materials. 7th Annual AEC Fuels and Materials Development Program Report, General Electric Company

    Google Scholar 

  • Deng S, Yuan T, Li R, Zeng F, Liu G, Zhou X (2017) Spark plasma sintering of pure tungsten powder: densification kinetics amd grain growth. Powder Technol 310:264–271

    Article  CAS  Google Scholar 

  • Deng S, Yuan T, Li R, Zeng F, Liu G, Zhou X (2018) Direct current-enhanced densification kinetics during spark plasma sintering of tungsten powder. Scr Mater 143:25–29

    Article  CAS  Google Scholar 

  • Ehrlich G, Hudda FG (1966) Atomic view of surface self-diffusion: tungsten on tungsten. J Chem Phys 44(3):1039–1049

    Article  CAS  Google Scholar 

  • Farrell K, Schaffhauser AC, Stiegler JO (1967) Recrystallization, grain growth and ductile-to-brittle-transition in tungsten sheet. J Less-Common Met 13(2):141–155

    Article  CAS  Google Scholar 

  • Frost HJ, Ashby MF (1983) Deformation mechanism maps, plasticity and creep of metals and ceramics. Permagon Press, Oxford

    Google Scholar 

  • General Electric Company (1974a) High temperature gas reactor program summary Report (1974) Vol. I: Summary

    Google Scholar 

  • General Electric Company (1974b) 710 High temperature gas reactor program summary report (1974) Vol. VI: Fuel element drawings and manufacturing specifications

    Google Scholar 

  • German RM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  • Harrison B, Ellison E (1966) Creep and tensile properties of heavily drawn tungsten wire. Trans ASM 59:744–754

    Google Scholar 

  • Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams: new developments. Acta Metall 33(12):2163–2174

    Article  CAS  Google Scholar 

  • Hulbert DM, Anders A, Dudina DV, Anderson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ, Mukherjee A (2008) The absence of plasma in “spark plasma sintering”. J Appl Phys 104:03305

    Article  Google Scholar 

  • Hulbert DM, Anders A, Anderson J, Lavernia EJ, Mukherjee AK (2009) A discussion of the absence of plasma in spark plasma sintering. Scr Mater 60:835–838

    Article  CAS  Google Scholar 

  • Kassner ME, Perez-Prado MT (2009) Fundamentals of creep in metals and alloys. Elsevier, Oxford

    Google Scholar 

  • Kaufmann M, Neu R (2007) Tungsten as a first wall material in fusion devices. J Fusion Eng Des 82:521–527

    Article  CAS  Google Scholar 

  • King G, Sell H (1965) The effects of thoria on the elevated temperature tensile properties of recrystallized high purity tungsten. Trans AIME 233:1104–1113

    CAS  Google Scholar 

  • Klopp W, Raffo P (1964) Effects of purity and structure on recrystallization, grain growth, ductility, tensile strength and creep properties of arc melted tungsten. National Aeronautics and Space Administration, NASA TN D-2503

    Google Scholar 

  • Klopp W, Witzke W (1966) Mechanical properties and recrystallization behavior of electron-beam melted tungsten compared with arc-melted tungsten, National Aeronautics and Space Administration, NASA TN D 3232, 1966

    Google Scholar 

  • Klopp W, Witzke W, Raffo P (1964) Effects of grain size on the tensile stress and creep properties of arc-melted and electron-beam melted tungsten at 2250 F to 4150 F. National Aeronautics and Space Administration, NASA TM X-54756, 1964

    Google Scholar 

  • Krieder KG, Bruggeman G (1967) Grain boundary diffusion in tungsten. Trans AIME 239(8):1222–1226

    Google Scholar 

  • Langer J, Hoffmann MJ, Guillon O (2009) Direct comparison between hot pressing and electric field-assisted sintering of submicron alumina. Acta Mater 57:5454–5465

    Article  CAS  Google Scholar 

  • Lassner W, Schubert WD (1999) Tungsten properties, chemistry, technology of the element, alloys and chemical compounds. Kluwer Academic/Plenum Publishers, Norwell

    Google Scholar 

  • Luke MT (2010) Microstructural evolution of nickel during spark plasma sintering. MS Thesis, Boise State University

    Google Scholar 

  • Luo A, Jacobson DL, Shin KS (1992) Strength properties and deformation behavior of arc-melted and powder-metallurgy processed tungsten at high temperatures. J Refract Met Hard Mater 11:1–8

    Article  CAS  Google Scholar 

  • Mistler RE (1968) Comments on the paper grain growth during sintering of tungsten. J Appl Phys 39:4875

    Article  CAS  Google Scholar 

  • Mitteau R, Missiaen JM, Brustolin P, Ozer O, Durocher A, Russet C, Lungu CP, Courtois X, Dominicy C, Maier H, Grisolia C, Piazza G, Chuppuis P (2007) Recent developments towards the use of tungsten Armour material in plasma facing components. J Fusion Eng Des 82:1700–1705

    Article  CAS  Google Scholar 

  • Mundy JN, Rothman SJ, Lam NQ, Hoff HA, Nowicki LJ (1978) Self diffusion in tungsten. Phys Rev B 18:6566

    Article  CAS  Google Scholar 

  • Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777

    Article  CAS  Google Scholar 

  • Olevsky E, Froyen L (2006) Constitutive modeling of spark-plasma sintering of conductive materials. Scr Mater 55:1175–1178

    Article  CAS  Google Scholar 

  • Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92(S1):S122–S132

    Article  CAS  Google Scholar 

  • Olevsky E, Kandukuri S, Froyen L (2007) Consolidation enhancement in spark plasma sintering: impact of high heating rates. J Appl Phys 102:114913

    Article  Google Scholar 

  • Pawel RE, Lundy TS (1969) Tracer diffusion in tungsten. Acta Metall 17(8):979–988

    Article  CAS  Google Scholar 

  • Perkins JB (2011) Spark plasma sintering of tungsten and tungsten-ceria: microstructures and kinetics. MS Thesis, Boise State University

    Google Scholar 

  • Pottlacher G, Hixson RS, Melnitzky S, Kaschnitz E, Winkler MA, Jager H (1993) Thermophysical properties of POCO AXF-5Q graphite up to melting. Thermochim Acta 218:183–193

    Google Scholar 

  • Raj S, Iskovitz I, Freed A (1995) Modeling of the role of dislocation substructure during class-M and exponential creep. National Aeronautics and Space Administration, NASA TM-106986

    Google Scholar 

  • Robinson S, Sherby OD (1969) Mechanical behavior of polycrystalline tungsten at elevated temperature. Acta Metall 17(2):109–125

    Article  CAS  Google Scholar 

  • Song X, Liu X, Zhang J (2006) Neck formation and self-adjusting mechanism of neck growth of conducting powders in spark plasma sintering. J Am Ceram Soc 89(2):494–500

    Article  CAS  Google Scholar 

  • Stephens JR (1963) Effects of oxygen on mechanical properties of tungsten. National Aeronautics and Space Administration, NASA TN D-1581

    Google Scholar 

  • Storms E (1967) The refractory carbides. Academic, Cambridge, MA

    Google Scholar 

  • Syvertsen GE, Estournes C, Fjeld H, Haugsrud R, Einarsrud MA, Grande T (2012) Spark plasma sintering and hot pressing of hetero-doped LaNbO4. J Am Ceram Soc 95(5):1563–1571

    Article  CAS  Google Scholar 

  • Taylor N, Dunand DC, Mortensen A (1993) Initial stage hot pressing of monosized Ti and 90% Ti-10% TiC powders. Acta Mater 41(3):955–965

    Article  CAS  Google Scholar 

  • Webb JA, Charit I (2011) Monte Carlo criticality analysis of simple geometries containing tungsten-rhenium alloys engrained with uranium dioxide and uranium mononitride. J Nucl Eng Des 241(8):2968–2973

    Article  CAS  Google Scholar 

  • Webb JA, Charit I (2012) Analytical determination of thermal conductivity of W-UO2 and W-UN CERMET nuclear fuels. J Nucl Mater 427:87–94

    Article  CAS  Google Scholar 

  • Xie G, Ohashi O, Song M, Mitsuishi K, Furuya K (2005) Reduction mechanism of surface oxide films and characterization of formations on pulse electric-current sintered Al-Mg alloy powders. Appl Surf Sci 241:102–106

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Daniella Fredrick of Thermal Technology LLC for conducting some sintering experiments. JW would also like to thank Tammy Trowbridge of the Idaho National Laboratory for conducting the EBSD and SEM analysis presented in this work. Finally, the research was performed using funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs (NEUP contract # 42246-57). The authors would also like to acknowledge the contributions of Dr. Mark Carroll and Cory Sparks during the execution of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Charit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Webb, J.A., Charit, I., Butt, D.P. (2019). Microstructural Evolution and Related Kinetics During Pulsed Electric Current Sintering of Tungsten. In: Cavaliere, P. (eds) Spark Plasma Sintering of Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-05327-7_10

Download citation

Publish with us

Policies and ethics