Skip to main content

Metabolomic Approaches in Vitamin E Research

  • Chapter
  • First Online:
  • 1060 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

Metabolomics aims to characterise changes to the complement of metabolites in a biological sample (metabolome), and this technology is gaining interest in nutrition research as it can define perturbations to metabolism induced by dietary factors. There have been a number of metabolomic studies in human and animal models based around vitamin E supplementation or deficiency that have highlighted potential areas in metabolism that vitamin E may play a role. In humans, vitamin E supplementation has been shown to influence phospholipid metabolism and amino acid metabolism, and discriminatory metabolites have included several vitamin E metabolites. Proteomic studies looking at associations with vitamin E concentrations have demonstrated consistent relationships with several apoproteins. Metabolomic studies in animal models include studies on zebrafish foetal development that showed changes to antioxidant status and lipid peroxidation with vitamin E deficiency and rodent models of vitamin E deficiency that showed influences on central metabolism. Metabolomics has proven to be a useful research tool to identify novel functions of vitamin E.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 2004;22(5):245–52.

    Article  CAS  PubMed  Google Scholar 

  2. Kell DB. Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol. 2004;7(3):296–307.

    Article  CAS  PubMed  Google Scholar 

  3. Whitfield PD, German AJ, Noble PJ. Metabolomics: an emerging post-genomic tool for nutrition. Br J Nutr. 2004;92(4):549–55.

    Article  CAS  PubMed  Google Scholar 

  4. Rezzi S, Ramadan Z, Martin FP, Fay LB, Bladeren PV, Lindon JC, et al. Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J Proteome Res. 2007;6(11):4469–77.

    Article  CAS  PubMed  Google Scholar 

  5. Zeisel SH, Freake HC, Bauman DE, Bier DM, Burrin DG, German JB, et al. The nutritional phenotype in the age of metabolomics. J Nutr. 2005;135(7):1613–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Valianpour F, Selhorst JJ, van Lint LE, van Gennip AH, Wanders RJ, Kemp S. Analysis of very long-chain fatty acids using electrospray ionization mass spectrometry. Mol Genet Metab. 2003;79(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  7. Fu H, Xu L, Lv Q, Wang JZ, Xiao HZ, Zhao YF. Electrospray ionization mass spectra of amino acid phosphoramidates of adenosine. Rapid Commun Mass Spectrom. 2000;14(19):1813–22.

    Article  CAS  PubMed  Google Scholar 

  8. Ohdoi C, Nyhan WL, Kuhara T. Chemical diagnosis of Lesch-Nyhan syndrome using gas chromatography-mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;792(1):123–30.

    Article  CAS  PubMed  Google Scholar 

  9. Pelander A, Ojanpera I, Laks S, Rasanen I, Vuori E. Toxicological screening with formula-based metabolite identification by liquid chromatography/time-of-flight mass spectrometry. Anal Chem. 2003;75(21):5710–8.

    Article  CAS  PubMed  Google Scholar 

  10. Beckonert O, Monnerjahn J, Bonk U, Leibfritz D. Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 2003;16(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  11. Beckmann M, Enot DP, Overy DP, Draper J. Representation, comparison, and interpretation of metabolome fingerprint data for total composition analysis and quality trait investigation in potato cultivars. J Agric Food Chem. 2007;55(9):3444–51.

    Article  CAS  PubMed  Google Scholar 

  12. Catchpole GS, Beckmann M, Enot DP, Mondhe M, Zywicki B, Taylor J, et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc Natl Acad Sci U S A. 2005;102(40):14458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, et al. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol. 2008;4:214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhao X, Peter A, Fritsche J, Elcnerova M, Fritsche A, Haring HU, et al. Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? Am J Physiol Endocrinol Metab. 2009;296(2):E384–93.

    Article  CAS  PubMed  Google Scholar 

  15. Fave G, Beckmann M, Lloyd AJ, Zhou S, Harold G, Lin W, et al. Development and validation of a standardized protocol to monitor human dietary exposure by metabolite fingerprinting of urine samples. Metabolomics. 2011;7(4):469–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lloyd AJ, Fave G, Beckmann M, Lin W, Tailliart K, Xie L, et al. Use of mass spectrometry fingerprinting to identify urinary metabolites after consumption of specific foods. Am J Clin Nutr. 2011;94(4):981–91.

    Article  CAS  PubMed  Google Scholar 

  17. Primrose S, Draper J, Elsom R, Kirkpatrick V, Mathers JC, Seal C, et al. Metabolomics and human nutrition. Br J Nutr. 2011;105(8):1277–83.

    Article  PubMed  Google Scholar 

  18. Beckmann M, Joosen AM, Clarke MM, Mugridge O, Frost G, Engel B, et al. Changes in the human plasma and urinary metabolome associated with acute dietary exposure to sucrose and the identification of potential biomarkers of sucrose intake. Mol Nutr Food Res. 2016;60(2):444–57.

    Article  CAS  PubMed  Google Scholar 

  19. Lodge JK. Symposium 2: modern approaches to nutritional research challenges: targeted and non-targeted approaches for metabolite profiling in nutritional research. Proc Nutr Soc. 2010;69(1):95–102.

    Article  CAS  PubMed  Google Scholar 

  20. Drake SK, Bowen RA, Remaley AT, Hortin GL. Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides. Clin Chem. 2004;50(12):2398–401.

    Article  CAS  PubMed  Google Scholar 

  21. Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, et al. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem. 2006;78(13):4307–18.

    Article  CAS  PubMed  Google Scholar 

  22. Maher AD, Zirah SF, Holmes E, Nicholson JK. Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Anal Chem. 2007;79(14):5204–11.

    Article  CAS  PubMed  Google Scholar 

  23. Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 2006;84(3):531–9.

    Article  CAS  PubMed  Google Scholar 

  24. Beckmann M, Lloyd AJ, Haldar S, Fave G, Seal CJ, Brandt K, et al. Dietary exposure biomarker-lead discovery based on metabolomics analysis of urine samples. Proc Nutr Soc. 2013;72(3):352–61.

    Article  CAS  PubMed  Google Scholar 

  25. Dunn WB, Broadhurst D, Ellis DI, Brown M, Halsall A, O’Hagan S, et al. A GC-TOF-MS study of the stability of serum and urine metabolomes during the UK Biobank sample collection and preparation protocols. Int J Epidemiol. 2008;37(Suppl 1):i23–30.

    Article  PubMed  Google Scholar 

  26. Gika HG, Theodoridis GA, Wingate JE, Wilson ID. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: application to human urine. J Proteome Res. 2007;6(8):3291–303.

    Article  CAS  PubMed  Google Scholar 

  27. Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem. 2006;78(3):743–52.

    Article  CAS  PubMed  Google Scholar 

  28. Bruce SJ, Jonsson P, Antti H, Cloarec O, Trygg J, Marklund SL, et al. Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: from extraction to data analysis. Anal Biochem. 2008;372(2):237–49.

    Article  CAS  PubMed  Google Scholar 

  29. Wong MC, Lee WT, Wong JS, Frost G, Lodge J. An approach towards method development for untargeted urinary metabolite profiling in metabonomic research using UPLC/QToF MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871(2):341–8.

    Article  CAS  PubMed  Google Scholar 

  30. Guy PA, Tavazzi I, Bruce SJ, Ramadan Z, Kochhar S. Global metabolic profiling analysis on human urine by UPLC-TOFMS: issues and method validation in nutritional metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;871(2):253–60.

    Article  CAS  PubMed  Google Scholar 

  31. Sangster TP, Wingate JE, Burton L, Teichert F, Wilson ID. Investigation of analytical variation in metabonomic analysis using liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2007;21(18):2965–70.

    Article  CAS  PubMed  Google Scholar 

  32. Torquato P, Ripa O, Giusepponi D, Galarini R, Bartolini D, Wallert M, et al. Analytical strategies to assess the functional metabolome of vitamin E. J Pharm Biomed Anal. 2016;124:399–412.

    Article  CAS  PubMed  Google Scholar 

  33. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, Velzen EJJ, et al. Assessment of PLSDA cross validation. Metabolomics. 2008;4(1):81–9.

    Article  CAS  Google Scholar 

  34. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35(Database issue):D521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–51.

    Article  CAS  PubMed  Google Scholar 

  36. Go VL, Nguyen CT, Harris DM, Lee WN. Nutrient-gene interaction: metabolic genotype-phenotype relationship. J Nutr. 2005;135(12 Suppl):3016S–20S.

    Article  CAS  PubMed  Google Scholar 

  37. Wong M, Lodge JK. A metabolomic investigation of the effects of vitamin E supplementation in humans. Nutr Metab. 2012;9(1):110.

    Article  CAS  Google Scholar 

  38. Johnson CH, Slanar O, Krausz KW, Kang DW, Patterson AD, Kim JH, et al. Novel metabolites and roles for α-tocopherol in humans and mice discovered by mass spectrometry-based metabolomics. Am J Clin Nutr. 2012;96(4):818–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mondul AM, Moore SC, Weinstein SJ, Evans AM, Karoly ED, Mannisto S, et al. Serum metabolomic response to long-term supplementation with all-rac-α-tocopheryl acetate in a randomized controlled trial. J Nutr Metab. 2016;2016:6158436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bruno RS, Traber MG. Cigarette smoke alters human vitamin E requirements. J Nutr. 2005;135(4):671–4.

    Article  CAS  PubMed  Google Scholar 

  41. Jeanes YM, Hall WL, Proteggente AR, Lodge JK. Cigarette smokers have decreased lymphocyte and platelet α-tocopherol levels and increased excretion of the γ-tocopherol metabolite γ-carboxyethyl-hydroxychroman (γ-CEHC). Free Radic Res. 2004;38(8):861–8.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng J, Joyce A, Yates K, Aouizerat B, Sanyal AJ. Metabolomic profiling to identify predictors of response to vitamin E for non-alcoholic steatohepatitis (NASH). PLoS One. 2012;7(9):e44106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Da Costa LA, Garcia-Bailo B, Borchers CH, Badawi A, El-Sohemy A. Association between the plasma proteome and plasma α-tocopherol concentrations in humans. J Nutr Biochem. 2013;24(1):396–400.

    Article  PubMed  CAS  Google Scholar 

  44. West KP Jr, Cole RN, Shrestha S, Schulze KJ, Lee SE, Betz J, et al. A plasma α-tocopherome can be identified from proteins associated with vitamin E status in school-aged children of Nepal. J Nutr. 2015;145(12):2646–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cole RN, Ruczinski I, Schulze K, Christian P, Herbrich S, Wu L, et al. The plasma proteome identifies expected and novel proteins correlated with micronutrient status in undernourished Nepalese children. J Nutr. 2013;143(10):1540–8.

    Article  CAS  PubMed  Google Scholar 

  46. Moazzami AA, Andersson R, Kamal-Eldin A. Changes in the metabolic profile of rat liver after α-tocopherol deficiency as revealed by metabolomics analysis. NMR Biomed. 2011;24(5):499–505.

    Article  CAS  PubMed  Google Scholar 

  47. Adachi K, Izumi M, Mitsuma T. Effect of vitamin E deficiency on rat brain monoamine metabolism. Neurochem Res. 1999;24(10):1307–11.

    Article  CAS  PubMed  Google Scholar 

  48. Moazzami AA, Frank S, Gombert A, Sus N, Bayram B, Rimbach G, et al. Non-targeted 1H-NMR-metabolomics suggest the induction of master regulators of energy metabolism in the liver of vitamin E-deficient rats. Food Funct. 2015;6(4):1090–7.

    Article  CAS  PubMed  Google Scholar 

  49. Starnes JW, Parry TL, O’Neal SK, Bain JR, Muehlbauer MJ, Honcoop A, et al. Exercise-induced alterations in skeletal muscle, heart, liver, and serum metabolome identified by non-targeted metabolomics analysis. Meta. 2017;7(3):40.

    Google Scholar 

  50. McDougall M, Choi J, Truong L, Tanguay R, Traber MG. Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets. Free Radic Biol Med. 2017;110:250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi J, Leonard SW, Kasper K, McDougall M, Stevens JF, Tanguay RL, et al. Novel function of vitamin E in regulation of zebrafish (Danio rerio) brain lysophospholipids discovered using lipidomics. J Lipid Res. 2015;56(6):1182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McDougall MQ, Choi J, Stevens JF, Truong L, Tanguay RL, Traber MG. Lipidomics and H2(18)O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos. Redox Biol. 2016;8:165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cho JY, Kang DW, Ma X, Ahn SH, Krausz KW, Luecke H, et al. Metabolomics reveals a novel vitamin E metabolite and attenuated vitamin E metabolism upon PXR activation. J Lipid Res. 2009;50(5):924–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Lodge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lodge, J.K. (2019). Metabolomic Approaches in Vitamin E Research. In: Weber, P., Birringer, M., Blumberg, J., Eggersdorfer, M., Frank, J. (eds) Vitamin E in Human Health. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05315-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05315-4_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-05314-7

  • Online ISBN: 978-3-030-05315-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics