Skip to main content

Interaction Between Vitamin E and Polyunsaturated Fatty Acids

  • Chapter
  • First Online:
Vitamin E in Human Health

Part of the book series: Nutrition and Health ((NH))

Abstract

Polyunsaturated fatty acids (PUFA) are nutritionally essential since they cannot be synthesized de novo from two-carbon fragments. As a result of their unsaturated double bonds, PUFA are susceptible to chemical reactions with reactive oxygen and nitrogen species (ROS and RNS, respectively). PUFA incorporated into phospholipids and present in biological membranes not only influence membrane fluidity, curvature, and the properties of membrane microdomains, but increase also the risk for chain reactions of lipid peroxidation leading to membrane destabilization and cellular dysfunction. Vitamin E, the main lipid-soluble antioxidant, stabilizes membranes by itself and protects PUFA by scavenging lipid peroxyl radicals. Thus, vitamin E and PUFA form an interdependent chemical pair in which vitamin E protects PUFA, whereas excess PUFA “consume” vitamin E, a high PUFA/vitamin E ratio being generally assumed as disadvantageous. In cells, both PUFA and vitamin E have their own redox-independent regulatory functions, mostly after being metabolized to active lipid mediators able to bind to specific enzymes and receptors involved in modulating specific signal transduction and gene expression pathways. Thus, the efficiency of uptake, transport, and metabolism of vitamin E and PUFA, their interaction, and their consequent relative levels in cells and tissues are important determinants for both physiological and pathophysiological cellular functions and therefore influence the risk for a number of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azzi A, Meydani SN, Meydani M, Zingg JM. The rise, the fall and the renaissance of vitamin E. Arch Biochem Biophys. 2016;595:100–8. https://doi.org/10.1016/j.abb.2015.11.010.

    Article  CAS  PubMed  Google Scholar 

  2. Schmolz L, Birringer M, Lorkowski S, Wallert M. Complexity of vitamin E metabolism. World J Biol Chem. 2016;7:14–43. https://doi.org/10.4331/wjbc.v7.i1.14.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zingg JM. Vitamin E: an overview of major research directions. Mol Asp Med. 2007;28:400–22.

    Article  CAS  Google Scholar 

  4. Azzi A. Many tocopherols, one vitamin E. Mol Aspects Med. 2017; https://doi.org/10.1016/j.mam.2017.06.004.

  5. Chen B, McClements DJ, Decker EA. Minor components in food oils: a critical review of their roles on lipid oxidation chemistry in bulk oils and emulsions. Crit Rev Food Sci Nutr. 2011;51:901–16. https://doi.org/10.1080/10408398.2011.606379.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang Q. Natural forms of vitamin E: metabolism, antioxidant and anti-inflammatory activities and the role in disease prevention and therapy. Free Radic Biol Med doi: S0891-5849(14)00152-X [pii]. 2014; https://doi.org/10.1016/j.freeradbiomed.2014.03.035.

  7. Jiang Q, Christen S, Shigenaga MK, Ames BN. Gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr. 2001;74:714–22.

    Article  CAS  PubMed  Google Scholar 

  8. Grilo EC, Costa PN, Gurgel CSS, Beserra AF, Almeida FN, Dimenstein R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci Tech. 2014;34:379–85.

    Article  Google Scholar 

  9. Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res. 2015;1597:220–46. https://doi.org/10.1016/j.brainres.2014.11.059.

    Article  CAS  PubMed  Google Scholar 

  10. Palmquist DL. Omega-3 fatty acids in metabolism, health, and nutrition and for modified animal product foods. Prof Anim Sci. 2009;25:207–49.

    Article  Google Scholar 

  11. Wassall SR, Stillwell W. Docosahexaenoic acid domains: the ultimate non-raft membrane domain. Chem Phys Lipids. 2008;153:57–63. https://doi.org/10.1016/j.chemphyslip.2008.02.010.

    Article  CAS  PubMed  Google Scholar 

  12. Lebold KM, et al. Novel liquid chromatography-mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos. Redox Biol. 2013;2:105–13. https://doi.org/10.1016/j.redox.2013.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lebold KM, Traber MG. Interactions between alpha-tocopherol, polyunsaturated fatty acids, and lipoxygenases during embryogenesis. Free Radic Biol Med. 2014;66:13–9. https://doi.org/10.1016/j.freeradbiomed.2013.07.039.

    Article  CAS  PubMed  Google Scholar 

  14. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47:147–55. https://doi.org/10.1016/j.plipres.2007.12.004.

    Article  CAS  PubMed  Google Scholar 

  15. Gorjao R, Azevedo-Martins AK, Rodrigues HG, Abdulkader F, Arcisio-Miranda M, Procopio J, Curi R. Comparative effects of DHA and EPA on cell function. Pharmacol Ther. 2009;122:56–64. https://doi.org/10.1016/j.pharmthera.2009.01.004.

    Article  CAS  PubMed  Google Scholar 

  16. Russell FD, Burgin-Maunder CS. Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids. Mar Drugs. 2012;10:2535–59. https://doi.org/10.3390/md10112535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson BM, Ma DW. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis. 2009;8:33. https://doi.org/10.1186/1476-511X-8-33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci. 2015;7:52. https://doi.org/10.3389/fnagi.2015.00052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mozaffarian D, Wu JH. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary? J Nutr. 2012;142:614S–25S. https://doi.org/10.3945/jn.111.149633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu D, Meydani SN. N-3 polyunsaturated fatty acids and immune function. Proc Nutr Soc. 1998;57:503–9.

    Article  CAS  PubMed  Google Scholar 

  21. Raederstorff D, Wyss A, Calder PC, Weber P, Eggersdorfer M. Vitamin E function and requirements in relation to PUFA. Br J Nutr. 2015;114:1113–22. https://doi.org/10.1017/S000711451500272X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valk EE, Hornstra G. Relationship between vitamin E requirement and polyunsaturated fatty acid intake in man: a review. Int J Vitam Nutr Res Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Journal international de vitaminologie et de nutrition. 2000;70:31–42. https://doi.org/10.1024/0300-9831.70.2.31.

    Article  CAS  PubMed  Google Scholar 

  23. IOS. Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. Washington, DC: National Academy Press; 2000. p. 186–283.

    Google Scholar 

  24. Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Phys Endocrinol Metab. 2009;296:E1183–94.

    Article  CAS  Google Scholar 

  25. Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res. 2011;50:388–402. https://doi.org/10.1016/j.plipres.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  26. Rigotti A. Absorption, transport, and tissue delivery of vitamin E. Mol Asp Med. 2007;28:423–36.

    Article  CAS  Google Scholar 

  27. Takada T, Suzuki H. Molecular mechanisms of membrane transport of vitamin E. Mol Nutr Food Res. 2010;54:616–22. https://doi.org/10.1002/mnfr.200900481.

    Article  CAS  PubMed  Google Scholar 

  28. Kono N, Arai H. Intracellular transport of fat-soluble vitamins a and E. Traffic. 2015;16:19–34. https://doi.org/10.1111/tra.12231.

    Article  CAS  PubMed  Google Scholar 

  29. Ulatowski L, Manor D. Vitamin E trafficking in neurologic health and disease. Annu Rev Nutr. 2013;33:87–103. https://doi.org/10.1146/annurev-nutr-071812-161252.

    Article  CAS  PubMed  Google Scholar 

  30. Goncalves A, et al. Intestinal scavenger receptors are involved in vitamin K1 absorption. J Biol Chem. 2014;289:30743–52. https://doi.org/10.1074/jbc.M114.587659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goncalves A, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot MJ, Reboul E. Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption. Food Chem. 2015;172:155–60. https://doi.org/10.1016/j.foodchem.2014.09.021.

    Article  CAS  PubMed  Google Scholar 

  32. Traber MG. Vitamin E and K interactions--a 50-year-old problem. Nutr Rev. 2008;66:624–9. https://doi.org/10.1111/j.1753-4887.2008.00123.x.

    Article  PubMed  Google Scholar 

  33. Pownall H, Moore K. Commentary on fatty acid wars: the diffusionists versus the translocatists. Arterioscler Thromb Vasc Biol. 2014;34:e8–9. https://doi.org/10.1161/ATVBAHA.114.303380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Narushima K, Takada T, Yamanashi Y, Suzuki H. Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol. 2008;74:42–9.

    Article  CAS  PubMed  Google Scholar 

  35. Reboul E, et al. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J Biol Chem. 2006;281:4739–45.

    Article  CAS  PubMed  Google Scholar 

  36. Zingg JM. Vitamin E: a role in signal transduction. Annu Rev Nutr. 2015;35:135–73. https://doi.org/10.1146/annurev-nutr-071714-034347.

    Article  CAS  PubMed  Google Scholar 

  37. Zingg JM, Azzi A, Meydani M. Induction of VEGF expression by alpha-tocopherol and alpha-tocopheryl phosphate via PI3Kgamma/PKB and hTAP1/SEC14L2-mediated lipid exchange. J Cell Biochem. 2015;116:398–407.

    Article  CAS  PubMed  Google Scholar 

  38. Zingg JM, Azzi A, Meydani M. Alpha-tocopheryl phosphate induces VEGF expression via CD36/PI3Kgamma in THP-1 monocytes. J Cell Biochem. 2017; https://doi.org/10.1002/jcb.25871.

  39. Zingg JM, et al. Characterization of three human sec14p-like proteins: alpha-tocopherol transport activity and expression pattern in tissues. Biochimie. 2008;90:1703–15.

    Article  CAS  PubMed  Google Scholar 

  40. Traber MG. Mechanisms for the prevention of vitamin E excess. J Lipid Res. 2013;54:2295–306. https://doi.org/10.1194/jlr.R032946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Traber MG, Arai H. Molecular mechanisms of vitamin E transport. Annu Rev Nutr. 1999;19:343–55.

    Article  CAS  PubMed  Google Scholar 

  42. Wu JH, Croft KD. Vitamin E metabolism. Mol Asp Med. 2007;28:437–52.

    Article  CAS  Google Scholar 

  43. Borel P, Desmarchelier C. Genetic variations involved in vitamin E status. Int J Mol Sci. 2016;17 https://doi.org/10.3390/ijms17122094.

  44. Zingg JM. Vitamin E and disease risk: research focus turns on genetic polymorphisms and molecular mechanisms. Vitam Trace Elem. 2012;1:e110.

    Google Scholar 

  45. Zingg JM, Azzi A, Meydani M. Genetic polymorphisms as determinants for disease-preventive effects of vitamin E. Nutr Rev. 2008;66:406–14.

    Article  PubMed  Google Scholar 

  46. Abe C, Uchida T, Ohta M, Ichikawa T, Yamashita K, Ikeda S. Cytochrome P450-dependent metabolism of vitamin E isoforms is a critical determinant of their tissue concentrations in rats. Lipids. 2007;42:637–45.

    Article  CAS  PubMed  Google Scholar 

  47. Bardowell SA, Stec DE, Parker RS. Common variants of cytochrome P450 4F2 exhibit altered vitamin E-{omega}-hydroxylase specific activity. J Nutr. 2010;140:1901–6 doi: jn.110.128579 [pii]. https://doi.org/10.3945/jn.110.128579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blum S, et al. Vitamin E reduces cardiovascular disease in individuals with diabetes mellitus and the haptoglobin 2-2 genotype. Pharmacogenomics. 2010;11:675–84. https://doi.org/10.2217/pgs.10.17.

    Article  CAS  PubMed  Google Scholar 

  49. Borel P, Desmarchelier C, Nowicki M, Bott R, Tourniaire F. Can genetic variability in alpha-tocopherol bioavailability explain the heterogeneous response to alpha-tocopherol supplements? Antioxid Redox Signal. 2014;22:669. https://doi.org/10.1089/ars.2014.6144.

    Article  CAS  PubMed  Google Scholar 

  50. Borel P, et al. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans. J Nutr. 2013;143:448–56. https://doi.org/10.3945/jn.112.172734.

    Article  CAS  PubMed  Google Scholar 

  51. Borel P, Preveraud D, Desmarchelier C. Bioavailability of vitamin E in humans: an update. Nutr Rev. 2013;71:319–31. https://doi.org/10.1111/nure.12026.

    Article  PubMed  Google Scholar 

  52. Brigelius-Flohe R, Kelly FJ, Salonen JT, Neuzil J, Zingg JM, Azzi A. The European perspective on vitamin E: current knowledge and future research. Am J Clin Nutr. 2002;76:703–16.

    Article  CAS  PubMed  Google Scholar 

  53. Doring F, Rimbach G, Lodge JK. In silico search for single nucleotide polymorphisms in genes important in vitamin E homeostasis. IUBMB Life. 2004;56:615–20.

    Article  PubMed  Google Scholar 

  54. Huebbe P, Lodge JK, Rimbach G. Implications of apolipoprotein E genotype on inflammation and vitamin E status. Mol Nutr Food Res. 2010;54:623–30. https://doi.org/10.1002/mnfr.200900398.

    Article  CAS  PubMed  Google Scholar 

  55. Lecompte S, et al. Polymorphisms in the CD36/FAT gene are associated with plasma vitamin E concentrations in humans. Am J Clin Nutr. 2011;93:644–51. https://doi.org/10.3945/ajcn.110.004176.

    Article  CAS  PubMed  Google Scholar 

  56. Major JM, et al. Genetic variants reflecting higher vitamin e status in men are associated with reduced risk of prostate cancer. J Nutr. 2014;144:729–33. https://doi.org/10.3945/jn.113.189928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Milman U, et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blinded clinical trial. Arterioscler Thromb Vasc Biol. 2008;28:341–7.

    Article  CAS  PubMed  Google Scholar 

  58. Mocchegiani E, et al. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev. 2014;14:81–101. https://doi.org/10.1016/j.arr.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  59. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Steffensen R, Tybjaerg-Hansen A. Genetic variation in ABCA1 predicts ischemic heart disease in the general population. Arterioscler Thromb Vasc Biol. 2008;28:180–6.

    Article  CAS  PubMed  Google Scholar 

  60. Goncalves A, Roi S, Nowicki M, Niot I, Reboul E. Cluster-determinant 36 impacts on vitamin E postprandial response. Mol Nutr Food Res. 2014; https://doi.org/10.1002/mnfr.201400339.

  61. Mustacich DJ, Leonard SW, Devereaux MW, Sokol RJ, Traber MG. Alpha-tocopherol regulation of hepatic cytochrome P450s and ABC transporters in rats. Free Radic Biol Med. 2006;41:1069–78.

    Article  CAS  PubMed  Google Scholar 

  62. Nicod N, Parker RS. Vitamin E secretion by Caco-2 monolayers to APOA1, but not to HDL, is vitamer selective. J Nutr. 2013;143:1565–72. https://doi.org/10.3945/jn.113.176834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Olivier M, et al. ABCG1 is involved in vitamin e efflux. Biochim Biophys Acta. 2014;1841:1741–51. https://doi.org/10.1016/j.bbalip.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  64. Oram JF, Vaughan AM, Stocker R. ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. J Biol Chem. 2001;276:39898–902. https://doi.org/10.1074/jbc.M106984200.

    Article  CAS  PubMed  Google Scholar 

  65. Love-Gregory L, et al. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet. 2014;20:193–201.

    Article  Google Scholar 

  66. Love-Gregory L, et al. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum Mol Genet. 2008;17:1695–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Noel SE, Lai CQ, Mattei J, Parnell LD, Ordovas JM, Tucker KL. Variants of the CD36 gene and metabolic syndrome in Boston Puerto Rican adults. Atherosclerosis. 2010;211:210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Belisle SE, Leka LS, Delgado-Lista J, Jacques PF, Ordovas JM, Meydani SN. Polymorphisms at cytokine genes may determine the effect of vitamin E on cytokine production in the elderly. J Nutr. 2009;139:1855–60 doi: jn.109.112268 [pii]. https://doi.org/10.3945/jn.109.112268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wright ME, et al. Association of variants in two vitamin E transport genes with circulating vitamin E concentrations and prostate Cancer risk. Cancer Res. 2009;69:1429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bordoni A, Di Nunzio M, Danesi F, Biagi PL. Polyunsaturated fatty acids: from diet to binding to ppars and other nuclear receptors. Genes Nutr. 2006;1:95–106. https://doi.org/10.1007/BF02829951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sundaresan S, Abumrad NA. Dietary lipids inform the gut and brain about meal arrival via CD36-mediated signal transduction. J Nutr. 2015;145:2195–200. https://doi.org/10.3945/jn.115.215483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev. 2010;90:367–417. https://doi.org/10.1152/physrev.00003.2009.

    Article  CAS  PubMed  Google Scholar 

  73. Storch J, Thumser AE. Tissue-specific functions in the fatty acid-binding protein family. J Biol Chem. 2010;285:32679–83. https://doi.org/10.1074/jbc.R110.135210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baillie AG, Coburn CT, Abumrad NA. Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J Membr Biol. 1996;153:75–81.

    Article  CAS  PubMed  Google Scholar 

  75. Guo J, et al. Selective transport of long-chain fatty acids by FAT/CD36 in skeletal muscle of broilers. Animal: An Int J animal Biosci. 2013;7:422–9. https://doi.org/10.1017/S1751731112001619.

    Article  CAS  Google Scholar 

  76. Pohl J, Ring A, Korkmaz U, Ehehalt R, Stremmel W. FAT/CD36-mediated long-chain fatty acid uptake in adipocytes requires plasma membrane rafts. Mol Biol Cell. 2005;16:24–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Libinaki R, Gavin PD. Changes in bioavailability of Omega-3 (DHA) through alpha-tocopheryl phosphate mixture (TPM) after oral administration in rats. Nutrients. 2017;9 https://doi.org/10.3390/nu9091042.

  78. Song BJ, Elbert A, Rahman T, Orr SK, Chen CT, Febbraio M, Bazinet RP. Genetic ablation of CD36 does not alter mouse brain polyunsaturated fatty acid concentrations. Lipids. 2010;45:291–9. https://doi.org/10.1007/s11745-010-3398-z.

    Article  CAS  PubMed  Google Scholar 

  79. Alexander Aguilera A, Hernandez Diaz G, Lara Barcelata M, Angulo Guerrero O, Oliart Ros RM. Induction of Cd36 expression elicited by fish oil PUFA in spontaneously hypertensive rats. J Nutr Biochem. 2006;17:760–5. https://doi.org/10.1016/j.jnutbio.2005.12.007.

    Article  CAS  PubMed  Google Scholar 

  80. Galli F, et al. Vitamin E: emerging aspects and new directions. Free Radic Biol Med. 2016;102:16–36. https://doi.org/10.1016/j.freeradbiomed.2016.09.017.

    Article  CAS  PubMed  Google Scholar 

  81. Mardones P, et al. Alpha-tocopherol metabolism is abnormal in scavenger receptor class B type I (SR-BI)-deficient mice. J Nutr. 2002;132:443–9.

    Article  CAS  PubMed  Google Scholar 

  82. Nguyen LN, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509:503–6. https://doi.org/10.1038/nature13241.

    Article  CAS  PubMed  Google Scholar 

  83. Wong BH, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid (DHA) in eye and is important for photoreceptor cell development. J Biol Chem. 2016;291:10501–14. https://doi.org/10.1074/jbc.M116.721340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guemez-Gamboa A, et al. Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nat Genet. 2015;47:809–13. https://doi.org/10.1038/ng.3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pan Y, Scanlon MJ, Owada Y, Yamamoto Y, Porter CJ, Nicolazzo JA. Fatty acid-binding protein 5 facilitates the blood-brain barrier transport of docosahexaenoic acid. Mol Pharm. 2015;12:4375–85. https://doi.org/10.1021/acs.molpharmaceut.5b00580.

    Article  CAS  PubMed  Google Scholar 

  86. Pan Y, et al. Fatty acid-binding protein 5 at the blood-brain barrier regulates endogenous brain docosahexaenoic acid levels and cognitive function. J Neurosci: Off J Soc Neurosci. 2016;36:11755–67. https://doi.org/10.1523/JNEUROSCI.1583-16.2016.

    Article  CAS  Google Scholar 

  87. Choi J, Leonard SW, Kasper K, McDougall M, Stevens JF, Tanguay RL, Traber MG. Novel function of vitamin E in regulation of zebrafish (Danio rerio) brain lysophospholipids discovered using lipidomics. J Lipid Res. 2015; https://doi.org/10.1194/jlr.M058941.

  88. Wong M, Lodge JK. A metabolomic investigation of the effects of vitamin E supplementation in humans. Nutr Metab. 2012;9:110. https://doi.org/10.1186/1743-7075-9-110.

    Article  CAS  Google Scholar 

  89. Wong JT, Tran K, Pierce GN, Chan AC, O K, Choy PC. Lysophosphatidylcholine stimulates the release of arachidonic acid in human endothelial cells. J Biol Chem. 1998;273:6830–6.

    Article  CAS  PubMed  Google Scholar 

  90. Tanito M, et al. Acceleration of age-related changes in the retina in alpha-tocopherol transfer protein null mice fed a vitamin E-deficient diet. Invest Ophthalmol Vis Sci. 2007;48:396–404. https://doi.org/10.1167/iovs.06-0872.

    Article  PubMed  Google Scholar 

  91. Howard AC, McNeil AK, McNeil PL. Promotion of plasma membrane repair by vitamin E. Nat Commun. 2011;2:597. https://doi.org/10.1038/ncomms1594.

    Article  CAS  PubMed  Google Scholar 

  92. Labazi M, et al. The antioxidant requirement for plasma membrane repair in skeletal muscle. Free Radic Biol Med. 2015;84:246–53. https://doi.org/10.1016/j.freeradbiomed.2015.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang X, Quinn PJ. Vitamin E and its function in membranes. Prog Lipid Res. 1999;38:309–36.

    Article  CAS  PubMed  Google Scholar 

  94. Rimbach G, Moehring J, Huebbe P, Lodge JK. Gene-regulatory activity of alpha-tocopherol. Molecules. 2010;15:1746–61. https://doi.org/10.3390/molecules15031746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zingg JM. Modulation of signal transduction by vitamin E. Mol Asp Med. 2007;28:481–506.

    Article  CAS  Google Scholar 

  96. Zingg JM, Meydani M, Azzi A. Alpha-Tocopheryl phosphate - an active lipid mediator? Mol Nutr Food Res. 2010;54:1–14.

    Article  Google Scholar 

  97. Zingg JM, Meydani M, Azzi A. Alpha-Tocopheryl phosphate-an activated form of vitamin E important for angiogenesis and vasculogenesis? Biofactors. 2012;38:24–33. https://doi.org/10.1002/biof.198.

    Article  CAS  PubMed  Google Scholar 

  98. Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. The location and behavior of alpha-tocopherol in membranes. Mol Nutr Food Res. 2010;54:641–51.

    Article  CAS  PubMed  Google Scholar 

  99. Lemaire-Ewing S, Desrumaux C, Neel D, Lagrost L. Vitamin E transport, membrane incorporation and cell metabolism: is alpha-tocopherol in lipid rafts an oar in the lifeboat? Mol Nutr Food Res. 2010;54:631–40.

    Article  CAS  PubMed  Google Scholar 

  100. Chapkin RS, McMurray DN, Davidson LA, Patil BS, Fan YY, Lupton JR. Bioactive dietary long-chain fatty acids: emerging mechanisms of action. Br J Nutr. 2008;100:1152–7. https://doi.org/10.1017/S0007114508992576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zingg JM. Modulation of signal transduction and gene expression by vitamin E via PI3Kgamma/PKB and hTAP1/SEC14L2-mediated lipid exchange. J Nutr Sci Vitaminol (Tokyo). 2015;61(Suppl):S76–7. https://doi.org/10.3177/jnsv.61.S76.

    Article  CAS  Google Scholar 

  102. Royer MC, et al. 7-ketocholesterol incorporation into sphingolipid/cholesterol-enriched (lipid raft) domains is impaired by vitamin E: a specific role for alpha-tocopherol with consequences on cell death. J Biol Chem. 2009;284:15826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Klein A, et al. Alpha-tocopherol modulates phosphatidylserine externalization in erythrocytes: relevance in phospholipid transfer protein-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:2160–7.

    Article  CAS  PubMed  Google Scholar 

  104. Wang F, Wang T, Lai J, Li M, Zou C. Vitamin E inhibits hemolysis induced by hemin as a membrane stabilizer. Biochem Pharmacol. 2006;71:799–805.

    Article  CAS  PubMed  Google Scholar 

  105. Shaikh SR. Biophysical and biochemical mechanisms by which dietary N-3 polyunsaturated fatty acids from fish oil disrupt membrane lipid rafts. J Nutr Biochem. 2012;23:101–5. https://doi.org/10.1016/j.jnutbio.2011.07.001.

    Article  CAS  PubMed  Google Scholar 

  106. Shaikh SR, Wassall SR, Brown DA, Kosaraju R. N-3 polyunsaturated fatty acids, lipid microclusters and Vitamin E. Curr Top Membr. 2015;75:209–31. https://doi.org/10.1016/bs.ctm.2015.03.003.

    Article  PubMed  Google Scholar 

  107. Turk HF, Chapkin RS. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013;88:43–7. https://doi.org/10.1016/j.plefa.2012.03.008.

    Article  CAS  PubMed  Google Scholar 

  108. Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med. 2017; https://doi.org/10.1016/j.mam.2017.03.005.

  109. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101. https://doi.org/10.1038/nature13479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chandra V, Jasti J, Kaur P, Betzel C, Srinivasan A, Singh TP. First structural evidence of a specific inhibition of phospholipase A2 by alpha-tocopherol (vitamin E) and its implications in inflammation: crystal structure of the complex formed between phospholipase A2 and alpha-tocopherol at 1.8 A resolution. J Mol Biol. 2002;320:215–22.

    Article  CAS  PubMed  Google Scholar 

  111. Pentland AP, Morrison AR, Jacobs SC, Hruza LL, Hebert JS, Packer L. Tocopherol analogs suppress arachidonic acid metabolism via phospholipase inhibition. J Biol Chem. 1992;267:15578–84.

    CAS  PubMed  Google Scholar 

  112. Devaraj S, Jialal I. Alpha-tocopherol decreases interleukin-1 beta release from activated human monocytes by inhibition of 5-lipoxygenase. Arterioscler Thromb Vasc Biol. 1999;19:1125–33.

    Article  CAS  PubMed  Google Scholar 

  113. Grossman S, Waksman EG. New aspects of the inhibition of soybean lipoxygenase by alpha-tocopherol. Evidence for the existence of a specific complex. Int J Biochem. 1984;16:281–9.

    Article  CAS  PubMed  Google Scholar 

  114. Khanna S, Roy S, Ryu H, Bahadduri P, Swaan PW, Ratan RR, Sen CK. Molecular basis of vitamin E action. Tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J Biol Chem. 2003;278:43508–15.

    Article  CAS  PubMed  Google Scholar 

  115. Reddanna P, Rao MK, Reddy CC. Inhibition of 5-lipoxygenase by vitamin E. FEBS Lett. 1985;193:39–43.

    Article  CAS  PubMed  Google Scholar 

  116. Abate A, Yang G, Dennery PA, Oberle S, Schroder H. Synergistic inhibition of cyclooxygenase-2 expression by vitamin E and aspirin. Free Radic Biol Med. 2000;29:1135–42.

    Article  CAS  PubMed  Google Scholar 

  117. Lepley RA, Muskardin DT, Fitzpatrick FA. Tyrosine kinase activity modulates catalysis and translocation of cellular 5-lipoxygenase. J Biol Chem. 1996;271:6179–84.

    Article  CAS  PubMed  Google Scholar 

  118. Kono N, Ohto U, Hiramatsu T, Urabe M, Uchida Y, Satow Y, Arai H. Impaired alpha-TTP-PIPs interaction underlies familial vitamin E deficiency. Science. 2013.; doi: science.1233508 [pii] https://doi.org/10.1126/science.1233508.

  119. Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. Clin Lipidol. 2010;5:867–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zingg JM, Libinaki R, Meydani M, Azzi A. Modulation of phosphorylation of tocopherol and phosphatidylinositol by hTAP1/SEC14L2-mediated lipid exchange. PLoS One. 2014;9:e101550. https://doi.org/10.1371/journal.pone.0101550.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Saito K, Tautz L, Mustelin T. The lipid-binding SEC14 domain. Biochim Biophys Acta. 2007;1771:719–26.

    Article  CAS  PubMed  Google Scholar 

  122. Kempna P, Zingg JM, Ricciarelli R, Hierl M, Saxena S, Azzi A. Cloning of novel human SEC14p-like proteins: cellular localization, ligand binding and functional properties. Free Radic Biol Med. 2003;34:1458–72.

    Article  CAS  PubMed  Google Scholar 

  123. Ni J, et al. Tocopherol-associated protein suppresses prostate cancer cell growth by inhibition of the phosphoinositide 3-kinase pathway. Cancer Res. 2005;65:9807–16.

    Article  CAS  PubMed  Google Scholar 

  124. Panagabko C, et al. Ligand specificity in the CRAL-TRIO protein family. Biochemistry. 2003;42:6467–74.

    Article  CAS  PubMed  Google Scholar 

  125. Shibata N, et al. Regulation of hepatic cholesterol synthesis by a novel protein (SPF) that accelerates cholesterol biosynthesis. FASEB J. 2006;20:2642–4.

    Article  CAS  PubMed  Google Scholar 

  126. Gong B, Shen W, Xiao W, Meng Y, Meng A, Jia S. The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling. ELife. 2017;6 https://doi.org/10.7554/eLife.26362.

  127. Habermehl D, Kempna P, Azzi A, Zingg JM. Recombinant SEC14-like proteins (TAP) possess GTPase activity. Biochem Biophys Res Commun. 2004;326:254–9.

    Article  Google Scholar 

  128. Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys. 1993;300:535–43.

    Article  CAS  PubMed  Google Scholar 

  129. Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN. Gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc Natl Acad Sci U S A. 1997;94:3217–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jiang Z, Yin X, Jiang Q. Natural forms of vitamin E and 13′-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively. J Immunol. 2011;186:1173–9. https://doi.org/10.4049/jimmunol.1002342.

    Article  CAS  PubMed  Google Scholar 

  131. Trostchansky A, Bonilla L, Gonzalez-Perilli L, Rubbo H. Nitro-fatty acids: formation, redox signaling, and therapeutic potential. Antioxid Redox Signal. 2013;19:1257–65. https://doi.org/10.1089/ars.2012.5023.

    Article  CAS  PubMed  Google Scholar 

  132. Villacorta L, Gao Z, Schopfer FJ, Freeman BA, Chen YE. Nitro-fatty acids in cardiovascular regulation and diseases: characteristics and molecular mechanisms. Front Biosci. 2016;21:873–89.

    Article  CAS  Google Scholar 

  133. Georgiadi A, Kersten S. Mechanisms of gene regulation by fatty acids. Adv Nutr. 2012;3:127–34. https://doi.org/10.3945/an.111.001602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jump DB, Tripathy S, Depner CM. Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr. 2013;33:249–69. https://doi.org/10.1146/annurev-nutr-071812-161139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of gene expression. Nutr Rev. 2004;62:333–9.

    Article  PubMed  Google Scholar 

  136. Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr. 2005;25:317–40. https://doi.org/10.1146/annurev.nutr.25.051804.101917.

    Article  CAS  PubMed  Google Scholar 

  137. Jump DB, Botolin D, Wang Y, Xu J, Demeure O, Christian B. Docosahexaenoic acid (DHA) and hepatic gene transcription. Chem Phys Lipids. 2008;153:3–13. https://doi.org/10.1016/j.chemphyslip.2008.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yoshikawa T, et al. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem. 2002;277:1705–11. https://doi.org/10.1074/jbc.M105711200.

    Article  CAS  PubMed  Google Scholar 

  139. Xie S, et al. TR4 nuclear receptor functions as a fatty acid sensor to modulate CD36 expression and foam cell formation. Proc Natl Acad Sci U S A. 2009;106:13353–8. https://doi.org/10.1073/pnas.0905724106.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Devaraj S, Hugou I, Jialal I. Alpha-tocopherol decreases CD36 expression in human monocyte-derived macrophages. J Lipid Res. 2001;42:521–7.

    CAS  PubMed  Google Scholar 

  141. Munteanu A, Taddei M, Tamburini I, Bergamini E, Azzi A, Zingg JM. Antagonistic effects of oxidized low density lipoprotein and {alpha}-tocopherol on CD36 scavenger receptor expression in monocytes: involvement of protein kinase B and peroxisome proliferator-activated receptor-{gamma}. J Biol Chem. 2006;281:6489–97.

    Article  CAS  PubMed  Google Scholar 

  142. Ricciarelli R, Zingg JM, Azzi A. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation. 2000;102:82–7.

    Article  CAS  PubMed  Google Scholar 

  143. Zhao G, Etherton TD, Martin KR, Vanden Heuvel JP, Gillies PJ, West SG, Kris-Etherton PM. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem Biophys Res Commun. 2005;336:909–17. https://doi.org/10.1016/j.bbrc.2005.08.204.

    Article  CAS  PubMed  Google Scholar 

  144. Gingras AA, et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J Physiol. 2007;579:269–84. https://doi.org/10.1113/jphysiol.2006.121079.

    Article  CAS  PubMed  Google Scholar 

  145. Caputo M, Eletto D, Torino G, Tecce MF. Cooperation of docosahexaenoic acid and vitamin E in the regulation of UDP-glucuronosyltransferase mRNA expression. J Cell Physiol. 2008;215:765–70. https://doi.org/10.1002/jcp.21355.

    Article  CAS  PubMed  Google Scholar 

  146. Korosec T, Tomazin U, Horvat S, Keber R, Salobir J. The diverse effects of alpha- and gamma-tocopherol on chicken liver transcriptome. Poult Sci. 2016:pew296. https://doi.org/10.3382/ps/pew296.

  147. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21:781–92. https://doi.org/10.1016/j.jnutbio.2009.12.004.

    Article  CAS  PubMed  Google Scholar 

  148. Bozaykut P, Karademir B, Yazgan B, Sozen E, Siow RC, Mann GE, Ozer NK. Effects of vitamin E on peroxisome proliferator-activated receptor gamma and nuclear factor-erythroid 2-related factor 2 in hypercholesterolemia-induced atherosclerosis. Free Radic Biol Med. 2014;70C:174–81 doi: S0891-5849(14)00094-X [pii]. https://doi.org/10.1016/j.freeradbiomed.2014.02.017.

    Article  CAS  Google Scholar 

  149. Munteanu A, Zingg JM. Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Mol Asp Med. 2007;28:538–90.

    Article  CAS  Google Scholar 

  150. Munteanu A, Zingg JM, Azzi A. Anti-atherosclerotic effects of vitamin E - myth or reality? J Cell Mol Med. 2004;8:59–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Libinaki R, et al. The effect of tocopheryl phosphate on key biomarkers of inflammation: implication in the reduction of atherosclerosis progression in a hypercholesterolemic rabbit model. Clin Exp Pharmacol Physiol. 2010;37:587–92.

    Article  CAS  PubMed  Google Scholar 

  152. Libinaki R, Vinh A, Tesanovic-Klajic S, Widdop R, Gaspari T. The effect of tocopheryl phosphates (TPM) on the development of atherosclerosis in apolipoprotein-E deficient mice. Clin Exp Pharmacol Physiol. 2017;44:107. https://doi.org/10.1111/1440-1681.12821.

    Article  CAS  PubMed  Google Scholar 

  153. Negis Y, et al. The effect of tocopheryl phosphates on atherosclerosis progression in rabbits fed with a high cholesterol diet. Arch Biochem Biophys. 2006;450:63–6.

    Article  CAS  PubMed  Google Scholar 

  154. Amusquivar E, Ruperez FJ, Barbas C, Herrera E. Low arachidonic acid rather than alpha-tocopherol is responsible for the delayed postnatal development in offspring of rats fed fish oil instead of olive oil during pregnancy and lactation. J Nutr. 2000;130:2855–65.

    Article  CAS  PubMed  Google Scholar 

  155. Wu D, Han SN, Meydani M, Meydani SN. Effect of concomitant consumption of fish oil and vitamin E on T cell mediated function in the elderly: a randomized double-blind trial. J Am Coll Nutr. 2006;25:300–6.

    Article  CAS  PubMed  Google Scholar 

  156. Shefer-Weinberg D, Sasson S, Schwartz B, Argov-argaman N, Tirosh O. Deleterious effect of n-3 polyunsaturated fatty acids in non-alcoholic steatohepatitits in the fat-1 mouse model. Clin Nutr Exp. 2017;12:37–49.

    Article  Google Scholar 

  157. Meydani M. Vitamin E requirement in relation to dietary fish oil and oxidative stress in elderly. EXS. 1992;62:411–8.

    CAS  PubMed  Google Scholar 

  158. Meydani SN. Interaction of omega 3 polyunsaturated fatty acids and vitamin E on the immune response. World Rev Nutr Diet. 1994;75:155–61.

    Article  CAS  PubMed  Google Scholar 

  159. Meydani SN, Yogeeswaran G, Liu S, Baskar S, Meydani M. Fish oil and tocopherol-induced changes in natural killer cell-mediated cytotoxicity and PGE2 synthesis in young and old mice. J Nutr. 1988;118:1245–52.

    Article  CAS  PubMed  Google Scholar 

  160. Sanyal AJ, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85. https://doi.org/10.1056/NEJMoa0907929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Meydani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zingg, JM., Meydani, M. (2019). Interaction Between Vitamin E and Polyunsaturated Fatty Acids. In: Weber, P., Birringer, M., Blumberg, J., Eggersdorfer, M., Frank, J. (eds) Vitamin E in Human Health. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05315-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05315-4_11

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-05314-7

  • Online ISBN: 978-3-030-05315-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics