Advertisement

Quadrangular Mesh Generation Using Centroidal Voronoi Tessellation on Voxelized Surface

  • Ashutosh Soni
  • Partha BhowmickEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11255)

Abstract

We propose an efficient algorithm for isotropic tessellation on a voxelized surface. Owing to execution in the voxel space, the algorithm is easily compliant to parallel computation. We show how an input triangle mesh can readily be restructured to an isotropic quadrangular mesh after a post-processing on the tessellated surface. We also show how different regions of the quad mesh can be decimated to finer quads in an adaptive manner based on digital planarity. Necessary theoretical analysis and experimental results have been provided to adjudge its merit.

Keywords

Quad mesh Triangle mesh Voronoi tessellation Centroidal Voronoi tessellation Voxelized surface Digital geometry 

References

  1. 1.
    Bhunre, P.K., Bhowmick, P., Mukherjee, J.: On efficient computation of inter-simplex Chebyshev distance for voxelization of 2-manifold surface. Inf. Sci. (2018).  https://doi.org/10.1016/j.ins.2018.03.006
  2. 2.
    Alliez, P., De Verdière, E.C., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: Shape Modeling International, pp. 49–58 (2003).  https://doi.org/10.1109/SMI.2003.1199601
  3. 3.
    Baudouin, T.C., Remacle, J.-F., Marchandise, E., Lambrechts, J., Henrotte, F.: Lloyd’s energy minimization in the \(L_p\) norm for quadrilateral surface mesh generation. Eng. Comput. 30, 97–110 (2014).  https://doi.org/10.1007/s00366-012-0290-xCrossRefGoogle Scholar
  4. 4.
    Bommes, D., et al.: Quad-mesh generation and processing: a survey. Comput. Graph. Forum 32, 51–76 (2013).  https://doi.org/10.1111/cgf.12014CrossRefGoogle Scholar
  5. 5.
    Boubekeur, T., Reuter, P., Schlick, C.:Visualization of point-based surfaces with locally reconstructed subdivision surfaces. In: Shape Modeling and Applications, pp. 23–32 (2005).  https://doi.org/10.1109/SMI.2005.49
  6. 6.
    Cashman, T.J.: Beyond Catmull-Clark: a survey of advances in subdivision surface methods. Comput. Graph. Forum 31, 42–61 (2012).  https://doi.org/10.1111/j.1467-8659.2011.02083.xCrossRefGoogle Scholar
  7. 7.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)CrossRefGoogle Scholar
  8. 8.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57, 453–461 (1995).  https://doi.org/10.1006/gmip.1995.1039CrossRefGoogle Scholar
  9. 9.
    Du, Q., Gunzburger, M.D., Ju, L.: Constrained centroidal Voronoi tessellations for surfaces. SIAM J. Sci. Comput. 24, 1488–1506 (2003).  https://doi.org/10.1137/S1064827501391576MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26(3), 737–761 (2005).  https://doi.org/10.1137/S1064827503428527MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dyn, N., Levin, D., Liu, D.: Interpolatory convexity-preserving subdivision schemes for curves and surfaces. Comput. Aided Des. 24, 211–216 (1992).  https://doi.org/10.1016/0010-4485(92)90057-HCrossRefzbMATHGoogle Scholar
  12. 12.
    Fischer, I., Gotsman, C.: Fast approximation of high-order Voronoi diagrams and distance transforms on the GPU. J. Graph. Tools 11, 39–60 (2006).  https://doi.org/10.1080/2151237X.2006.10129229CrossRefGoogle Scholar
  13. 13.
    Hausner, A.: Simulating decorative mosaics. In: Computer Graphics & Interactive Techniques, pp. 573–580 (2001).  https://doi.org/10.1145/383259.383327
  14. 14.
    Hu, K., Zhang, Y.J.: Centroidal Voronoi tessellation based polycube construction for adaptive all-hexahedral mesh generation. Comput. Methods Appl. Mech. Eng. 305, 405–421 (2016).  https://doi.org/10.1016/j.cma.2016.03.021MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ju, T., Carson, J., Liu, L., Warren, J., Bello, M., Kakadiaris, I.: Subdivision meshes for organizing spatial biomedical data. Methods 50, 70–76 (2010).  https://doi.org/10.1016/j.ymeth.2009.07.012CrossRefGoogle Scholar
  16. 16.
    Karbacher, S., Seeger, S., Häusler, G.: A non-linear subdivision scheme for triangle meshes. In: Vision, Modeling and Visualization, pp. 163–170 (2000)Google Scholar
  17. 17.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis (2004)CrossRefGoogle Scholar
  18. 18.
    Klette, R., Stojmenović, I., Žunić, J.: A parametrization of digital planes by least-squares fits and generalizations. Graph. Models Image Process. 295–300 (1996).  https://doi.org/10.1006/gmip.1996.0024CrossRefGoogle Scholar
  19. 19.
    Leung, Y.-S., Wang, X., He, Y., Liu, Y.-J., Wang, C.C.: A unified framework for isotropic meshing based on narrow-band Euclidean distance transformation. Comput. Vis. Media 1, 239–251 (2015).  https://doi.org/10.1007/s41095-015-0022-4CrossRefGoogle Scholar
  20. 20.
    Lévy, B., Bonneel, N.: Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In: Jiao, X., Weill, J.C. (eds.) 21st International Meshing Roundtable, pp. 349–366. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33573-0_21CrossRefGoogle Scholar
  21. 21.
    Lévy, B., Liu, Y.: \(L_p\) centroidal Voronoi tessellation and its applications. ACM ToG, 29, Article no. 119 (2010).  https://doi.org/10.1145/1833349.1778856
  22. 22.
    Liu, Y., et al.: On centroidal Voronoi tessellation - energy smoothness and fast computation. ACM ToG 28, Article no. 101 (2009).  https://doi.org/10.1145/1559755.1559758CrossRefGoogle Scholar
  23. 23.
    Liu, Y.-J., Xu, C.-X., Yi, R., Fan, D., He, Y.: Manifold differential evolution (MDE): a global optimization method for geodesic centroidal Voronoi tessellations on meshes. ACM ToG 35, Article no. 243 (2016).  https://doi.org/10.1145/2980179.2982424Google Scholar
  24. 24.
    Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM ToG 16, 420–431 (1997).  https://doi.org/10.1145/263834.263851CrossRefGoogle Scholar
  25. 25.
    Rong, G., Liu, Y., Wang, W., Yin, X., Gu, D., Guo, X.: GPU-assisted computation of centroidal Voronoi tessellation. IEEE TVCG 17, 345–356 (2011).  https://doi.org/10.1109/TVCG.2010.53CrossRefGoogle Scholar
  26. 26.
    Rong, G., Tan, T.-S.: Jump flooding in GPU with applications to Voronoi diagram and distance transform. In: I3D 2006, pp. 109–116 (2006).  https://doi.org/10.1145/1111411.1111431
  27. 27.
    Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. Ph.D thesis, INRIA (2003)Google Scholar
  28. 28.
    Valette, S., Chassery, J.-M.: Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23, 381–389 (2004).  https://doi.org/10.1111/j.1467-8659.2004.00769.xCrossRefGoogle Scholar
  29. 29.
    Velho, L., Zorin, D.: 4–8 subdivision. Comput. Aided Geom. Des. 18, 397–427 (2001).  https://doi.org/10.1016/S0167-8396(01)00039-5CrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, X., et al.: Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes. Comput. Aided Des. 58, 51–61 (2015).  https://doi.org/10.1016/j.cad.2014.08.023CrossRefGoogle Scholar
  31. 31.
    Yan, D.-M., Lévy, B., Liu, Y., Sun, F., Wang, W.: Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput. Graph. Forum 28, 1445–1454 (2009).  https://doi.org/10.1111/j.1467-8659.2009.01521.xCrossRefGoogle Scholar
  32. 32.
    Yang, X.: Surface interpolation of meshes by geometric subdivision. Comput. Aided Des. 37, 497–508 (2005).  https://doi.org/10.1016/j.cad.2004.10.008CrossRefzbMATHGoogle Scholar
  33. 33.
    Yukihiro, K.: GPU-based cluster-labeling algorithm without the use of conventional iteration: application to the Swendsen-Wang multi-cluster spin flip algorithm. Comput. Phys. Commun. 194(Sup. C), 54–58 (2015).  https://doi.org/10.1016/j.cpc.2015.04.015CrossRefGoogle Scholar
  34. 34.
    Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Computer Graphics & Interactive Techniques, pp. 189–192 (1996).  https://doi.org/10.1145/237170.237254

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations