Advertisement

Binary Tomography on Triangular Grid Involving Hexagonal Grid Approach

  • Benedek Nagy
  • Tibor LukićEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11255)

Abstract

In this paper, we consider the binary tomography reconstruction problem of images on the triangular grid. The reconstruction process is based on three natural directions of projections, defined by the lane directions of the triangular grid (they are analogous to row and column directions on the square grid). The recently proposed shifted projection approach is applied, which allows that the number of delta and nabla shape triangular pixels in each lane to be exactly determined. The structure of the set of the same type pixels coincides with the structure of the hexagonal grid. The proposed new reconstruction process solve separately the task for the delta and nabla shape pixels on two hexagonal grids. Experimental results on a number of test images is presented and analyzed. The new method shows advantage in both aspects, quality of the reconstructions and running times.

Keywords

Discrete tomography Triangular grid Hexagonal grid Shifted projection approach Independent approach 

Notes

Acknowledgement

Tibor Lukić acknowledges the Ministry of Education and Sciences of the R. of Serbia for support via projects OI-174008 and III-44006. He also acknowledges support received from the Hungarian Academy of Sciences through the DOMUS project.

References

  1. 1.
    Abdalla, M., Nagy, B.: Dilation and erosion on the triangular tessellation: an independent approach. IEEE Access 6, 23108–23119 (2018)CrossRefGoogle Scholar
  2. 2.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG - software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)CrossRefGoogle Scholar
  3. 3.
    Birgin, E., Martínez, J.: A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients. In: Alefeld, G., Chen, X. (eds.) Topics in Numerical Analysis. COMPUTING, vol. 15, pp. 49–60. Springer, Vienna (2001).  https://doi.org/10.1007/978-3-7091-6217-0_5CrossRefGoogle Scholar
  4. 4.
    Borgefors, G.: Distance transformations on hexagonal grids. Pattern Recogn. Lett. 9(2), 97–105 (1989)CrossRefGoogle Scholar
  5. 5.
    Brimkov, V.E., Barneva, R.P.: “Honeycomb” vs square and cubic models. Electron. Notes Theoret. Comput. Sci. 46, 321–338 (2001)CrossRefGoogle Scholar
  6. 6.
    Brimkov, V.E., Barneva, R.P.: Analytical honeycomb geometry for raster and volume graphics. Comput. J. 48(2), 180–199 (2005)CrossRefGoogle Scholar
  7. 7.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular arrays. Commun. ACM 15(3), 827–837 (1972)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gale, D.: A theorem on flows in networks. Pacific J. Math. 7(2), 1073–1082 (1957)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golay, M.: Hexagonal parallel pattern transformations. IEEE Trans. Comput. 18, 733–740 (1969)CrossRefGoogle Scholar
  10. 10.
    Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4, 1213–1222 (1995)CrossRefGoogle Scholar
  11. 11.
    Herman, G.T., Kuba, A.: Advances in Discrete Tomography and Its Applications. Birkhäuser, Basel (2007)CrossRefGoogle Scholar
  12. 12.
    Kardos, P., Palagyi, K.: Hexagonal parallel thinning algorithms based on sufficient conditions for topology preservation. In: Proceedings of the International Symposium CompIMAGE, pp. 63–68 (2012)Google Scholar
  13. 13.
    Kardos, P., Palagyi, K.: On topology preservation in triangular. In: Proceedings of the International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 789–794 (2013)Google Scholar
  14. 14.
    Kardos, P., Palagyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discrete Appl. Math. 216, 441–448 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers/Elsevier Science B.V., San Francisco/Amsterdam (2004)zbMATHGoogle Scholar
  16. 16.
    Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. IEEE Trans. Comput. C–25(5), 532–533 (1976)CrossRefGoogle Scholar
  17. 17.
    Lukić, T., Balázs, P.: Binary tomography reconstruction based on shape orientation. Pattern Recogn. Lett. 79, 18–24 (2016)CrossRefGoogle Scholar
  18. 18.
    Lukić, T., Nagy, B.: Energy-minimization based discrete tomography reconstruction method for images on triangular grid. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 274–284. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34732-0_21CrossRefGoogle Scholar
  19. 19.
    Lukić, T., Nagy, B.: Deterministic discrete tomography reconstruction by energy minimization method on the triangular grid. Pattern Recogn. Lett. 49, 11–16 (2014)CrossRefGoogle Scholar
  20. 20.
    Lukić, T., Nagy, B.: Regularized Binary Tomography on The Hexagonal Grid (2018, Submitted)Google Scholar
  21. 21.
    Matej, S., Herman, G.T., Vardi, A.: Binary tomography on the hexagonal grid using Gibbs priors. Int. J. Imaging Syst. Technol. 9, 126–131 (1998)CrossRefGoogle Scholar
  22. 22.
    Moisi, E., Nagy, B.: Discrete tomography on the triangular grid: a memetic approach. In: Proceedings of 7th International Symposium on Image and Signal Processing and Analysis (ISPA 2011), pp. 579–584, Dubrovnik, Croatia (2011)Google Scholar
  23. 23.
    Moisi, E., Nagy, B., Cretu, V.: Reconstruction of binary images represented on equilateral triangular grid using evolutionary algorithms. In: Balas, V., Fodor, J., Várkonyi-Kóczy, A., Dombi, J., Jain, L. (eds.) Soft Computing Applications. AISC, vol. 195, pp. 561–571. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33941-7_49CrossRefGoogle Scholar
  24. 24.
    Nagy, B.: Shortest paths in triangular grids with neighbourhood sequences. J. Comput. Inf. Technol. 11, 111–122 (2003)CrossRefGoogle Scholar
  25. 25.
    Nagy, B., Barczi, K.: Isoperimetrically optimal polygons in the triangular grid with jordan-type neighbourhood on the boundary. Int. J. Comput. Math. 90, 1629–1652 (2013)CrossRefGoogle Scholar
  26. 26.
    Nagy, B., Lukić, T.: Dense projection tomography on the triangular tiling. Fundamenta Informaticae 145, 125–141 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Nagy, B., Lukić, T.: New projection approach for binary tomography on triangular grid (2018, Submitted)Google Scholar
  28. 28.
    Prause, G., Onnasch, D.: Binary reconstruction of the heart chambers from biplane angiographic image sequences. IEEE Trans. Med. Imag. 15, 532–46 (1997)CrossRefGoogle Scholar
  29. 29.
    Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Arts and SciencesEastern Mediterranean UniversityFamagustaTurkey
  2. 2.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations