Advertisement

Fixpoints of Iterated Reductions with Equivalent Deletion Rules

  • Kálmán PalágyiEmail author
  • Gábor Németh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11255)

Abstract

A reduction transforms a binary picture only by deleting some black points to white ones. Sequential reductions traverse the black points of a picture, and focus on the actually visited point for possible deletion, while parallel reductions delete all ‘deletable’ black points simultaneously. Two reductions are called equivalent if they produce the same result for each input picture. A deletion rule is said to be equivalent if it provides a pair of equivalent sequential and parallel reductions. Thinning and shrinking algorithms iterate reductions until no points are deleted. If a black point is not deleted in an iteration step, it is taken into consideration again in the next step. This work examine fixpoints of iterated reductions with equivalent deletion rules, i.e., ‘survival’ points whose rechecking is not needed in the remaining iterations.

Keywords

Digital geometry and topology Equivalent reduction Thinning 

Notes

Acknowledgments

This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and co-funded by the European Social Fund.

References

  1. 1.
    Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly, D., Montanvert, A., Chassery, J-M. (eds.) Géométrie discrète et images numériques, pp. 187–209. Hermès Science Publications (2007)Google Scholar
  2. 2.
    Hall, R.W., Kong, T.Y., Rosenfeld, A.: Shrinking binary images. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 31–98. Elsevier Science, Amsterdam (1996)CrossRefGoogle Scholar
  3. 3.
    Hall, R.W.: Parallel connectivity-preserving thinning algorithms. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 145–179. Elsevier Science, Amsterdam (1996)CrossRefGoogle Scholar
  4. 4.
    Kong, T.Y.: On topology preservation in 2-D and 3-D thinning. Int. J. Pattern Recognit. Artif. Intell. 9, 813–844 (1995).  https://doi.org/10.1142/S0218001495000341CrossRefGoogle Scholar
  5. 5.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989).  https://doi.org/10.1016/0734-189X(89)90147-3CrossRefGoogle Scholar
  6. 6.
    Kovalevsky, V.A.: Geometry of Locally Finite Spaces. Publishing House, Berlin (2008).  https://doi.org/10.1142/S0218654308001178CrossRefGoogle Scholar
  7. 7.
    Lam, L., Lee, S.-W., Suen, C.Y.: Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992).  https://doi.org/10.1109/34.161346CrossRefGoogle Scholar
  8. 8.
    Manzanera, M., Bernard, T.M., Pretêux, F., Longuet, B.: \(n\)-dimensional skeletonization: a unified mathematical framework. J. Electron. Imaging 11, 25–37 (2002).  https://doi.org/10.1117/1.1506930CrossRefGoogle Scholar
  9. 9.
    Marchand-Maillet, S., Sharaiha, Y.M.: Binary Digital Image Processing: A Discrete Approach. Academic Press, Cambridge (2000).  https://doi.org/10.1117/1.1326456CrossRefzbMATHGoogle Scholar
  10. 10.
    Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pulmonary airway tree structures. Comput. Biol. Med. 36, 974–996 (2006).  https://doi.org/10.1016/j.compbiomed.2005.05.004CrossRefGoogle Scholar
  11. 11.
    Palágyi, K.: A 3D fully parallel surface-thinning algorithm. Theor. Comput. Sci. 406, 119–135 (2008).  https://doi.org/10.1016/j.tcs.2008.06.041MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms: Theoretical Foundations and Applications to Computational Imaging. LNCVB, vol. 2, pp. 165–188. Springer, Dordrecht (2012).  https://doi.org/10.1007/978-94-007-4174-4_6CrossRefzbMATHGoogle Scholar
  13. 13.
    Palágyi, K.: Equivalent sequential and parallel reductions in arbitrary binary pictures. Int. J. Pattern Recognit. Artif. Intell. 28, 1460009-1–1460009-16 (2014).  https://doi.org/10.1142/S021800141460009XCrossRefGoogle Scholar
  14. 14.
    Palágyi, K.: Equivalent 2D sequential and parallel thinning algorithms. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 91–100. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07148-0_9CrossRefGoogle Scholar
  15. 15.
    Palágyi, K., Németh, G.: Endpoint-based thinning with designating safe skeletal points. In: Barneva, R.P., Brimkov, V.E., Kulczycki, P., Tavares, J.M.R.S. (eds.) CompIMAGE 2018. LNCS. Springer, Heidelberg (2018). In pressGoogle Scholar
  16. 16.
    Ranwez, V., Soille, P.: Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognit. Lett. 23, 687–702 (2002).  https://doi.org/10.1016/S0167-8655(01)00146-5CrossRefzbMATHGoogle Scholar
  17. 17.
    Suen, C.Y., Wang, P.S.P. (eds.): Thinning Methodologies for Pattern Recognition. Series in Machine Perception and Artificial Intelligence, vol. 8. World Scientific, Singapore (1994).  https://doi.org/10.1142/9789812797858_0009CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary

Personalised recommendations