Advertisement

Image-Based Object Spoofing Detection

  • Valter CostaEmail author
  • Armando Sousa
  • Ana Reis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11255)

Abstract

Using 2D images in authentication systems raises the question of spoof attacks: is it possible to deceive an authentication system using fake models possessing identical visual properties of the genuine one? In this work, an anti-spoofing method approach for a wine anti-counterfeiting system is presented. The proposed method relies in two different color spaces: CIE L*u*v* and \(YC_rC_b\), to distinguish between a genuine instance and a spoof attack. To evaluate the proposed strategy, two databases were used: a private database, with photos/2D attacks of cork stoppers, created for this work; and the public Replay-Attack database that is used for face spoofing detection methods testing. The results on the private database show that the anti-spoofing approach is able to distinguish with high accuracy a real photo from an attack. Regarding the public database, the results were obtained with existing methods, as the best HTER results using a single frame approach.

Keywords

Replay-attack database Cork-Print-Attack Database Spoofing detection Face spoofing detection Object spoofing detection 

Notes

Acknowledgments

Authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022 - SciTech - Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

References

  1. 1.
    Akhtar, Z., Foresti, G.L.: Face spoof attack recognition using discriminative image patches. J. Electr. Comput. Eng. 1–14 (2016). http://www.hindawi.com/journals/jece/2016/4721849/
  2. 2.
    Alotaibi, A., Mahmood, A.: Enhancing computer vision to detect face spoofing attack utilizing a single frame from a replay video attack using deep learning. In: 2016 International Conference on Optoelectronics and Image Processing (ICOIP), pp. 1–5. IEEE (2016). http://ieeexplore.ieee.org/document/7528488/
  3. 3.
    Alotaibi, A., Mahmood, A.: Deep face liveness detection based on nonlinear diffusion using convolution neural network. Signal Image Video Process. 11(4), 713–720 (2017).  https://doi.org/10.1007/s11760-016-1014-2CrossRefGoogle Scholar
  4. 4.
    Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011). http://ieeexplore.ieee.org/document/6117503/
  5. 5.
    Arashloo, S.R., Kittler, J., Christmas, W.: Face spoofing detection based on multiple descriptor fusion using multiscale dynamic binarized statistical image features. IEEE Trans. Inf. Forensics Secur. 10(11), 2396–2407 (2015). http://ieeexplore.ieee.org/document/7163625/CrossRefGoogle Scholar
  6. 6.
    Atoum, Y., Liu, Y., Jourabloo, A., Liu, X.: Face anti-spoofing using patch and depth-based CNNs. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 319–328. IEEE (2017). http://ieeexplore.ieee.org/document/8272713/
  7. 7.
    Benlamoudi, A., Aiadi, K.E., Ouafi, A., Samai, D., Oussalah, M.: Face antispoofing based on frame difference and multilevel representation. J. Electron. Imaging 26(4), 043007 (2017).  https://doi.org/10.1117/1.JEI.26.4.043007CrossRefGoogle Scholar
  8. 8.
    Bharadwaj, S., Dhamecha, T.I., Vatsa, M., Singh, R.: Computationally efficient face spoofing detection with motion magnification. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 105–110. IEEE (2013). http://ieeexplore.ieee.org/document/6595861/
  9. 9.
    Billmeyer, F.W.: Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: \$75.00. Color Res. Appl. 8(4), 262–263 (1983).  https://doi.org/10.1002/col.5080080421CrossRefGoogle Scholar
  10. 10.
    Boulkenafet, Z., Komulainen, J., Hadid, A.: Face anti-spoofing using speeded-up robust features and fisher vector encoding. IEEE Signal Process. Lett. 1 (2016). http://ieeexplore.ieee.org/document/7748511/
  11. 11.
    Boulkenafet, Z., Komulainen, J., Hadid, A.: Face spoofing detection using colour texture analysis. IEEE Trans. Inf. Forensics Secur. 11(8), 1818–1830 (2016). http://ieeexplore.ieee.org/document/7454730/CrossRefGoogle Scholar
  12. 12.
    Boulkenafet, Z., Komulainen, J., Xiaoyi Feng, Hadid, A.: Scale space texture analysis for face anti-spoofing. In: 2016 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2016). http://ieeexplore.ieee.org/document/7550078/
  13. 13.
    Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7 (2012)Google Scholar
  14. 14.
    Chingovska, I., et al.: The 2nd competition on counter measures to 2D face spoofing attacks. In: 2013 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2013). http://ieeexplore.ieee.org/document/6613026/
  15. 15.
    Chingovska, I., dos Anjos, A.R.: On the use of client identity information for face antispoofing. IEEE Trans. Inf. Forensics Secur. 10(4), 787–796 (2015). http://ieeexplore.ieee.org/document/7031941/CrossRefGoogle Scholar
  16. 16.
    Costa, V., Sousa, A., Reis, A.: Preventing wine counterfeiting by individual cork stopper recognition using image processing technologies. J. Imaging 4(4), 54 (2018). http://www.mdpi.com/2313-433X/4/4/54CrossRefGoogle Scholar
  17. 17.
    Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015). http://ieeexplore.ieee.org/document/7031384/CrossRefGoogle Scholar
  18. 18.
    Edmunds, T., Caplier, A.: Fake face detection based on radiometric distortions. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2016). http://ieeexplore.ieee.org/document/7820995/
  19. 19.
    Edmunds, T., Caplier, A.: Face spoofing detection based on colour distortions. IET Biom. 7(1), 27–38 (2018). http://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2017.0077CrossRefGoogle Scholar
  20. 20.
    Farmanbar, M., Toygar, Ö.: Spoof detection on face and palmprint biometrics. Signal Image Video Process. 11(7), 1253–1260 (2017).  https://doi.org/10.1007/s11760-017-1082-yCrossRefGoogle Scholar
  21. 21.
    Feng, L., et al.: Integration of image quality and motion cues for face anti-spoofing: a neural network approach. J. Vis. Commun. Image Represent. 38, 451–460 (2016). http://linkinghub.elsevier.com/retrieve/pii/S1047320316300244CrossRefGoogle Scholar
  22. 22.
    de Freitas Pereira, T., et al.: Face liveness detection using dynamic texture. EURASIP J. Image Video Process. 2014(1), 2 (2014). https://jivp-eurasipjournals.springeropen.com/articles/10.1186/1687-5281-2014-2CrossRefGoogle Scholar
  23. 23.
    Galbally, J., Marcel, S.: Face anti-spoofing based on general image quality assessment. In: 2014 22nd International Conference on Pattern Recognition, pp. 1173–1178. IEEE (2014). http://ieeexplore.ieee.org/document/6976921/
  24. 24.
    Gan, J., Li, S., Zhai, Y., Liu, C.: 3D convolutional neural network based on face anti-spoofing. In: 2017 2nd International Conference on Multimedia and Image Processing (ICMIP), pp. 1–5. IEEE (2017). http://ieeexplore.ieee.org/document/8221060/
  25. 25.
    Gragnaniello, D., Sansone, C., Poggi, G., Verdoliva, L.: Biometric spoofing detection by a domain-aware convolutional neural network. In: 2016 12th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), pp. 193–198. IEEE (2016). http://ieeexplore.ieee.org/document/7907465/
  26. 26.
    Kim, I., Ahn, J.., Kim,D.: Face spoofing detection with highlight removal effect and distortions. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 004299–004304. IEEE (2016). http://ieeexplore.ieee.org/document/7844907/
  27. 27.
    ITU: ITU-R Recommendation BT.601-5: Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios. Technical report, ITU, Geneva, Switzerland (1995)Google Scholar
  28. 28.
    Yang, J., Lei, Z., Yi, D., Li, S.Z.: Person-specific face antispoofing with subject domain adaptation. IEEE Trans. Inf. Forensics Secur. 10(4), 797–809 (2015). http://ieeexplore.ieee.org/document/7041231/CrossRefGoogle Scholar
  29. 29.
    Karray, F., Campilho, A., Cheriet, F. (eds.): Image Analysis and Recognition. LNCS, vol. 10317. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59876-5CrossRefGoogle Scholar
  30. 30.
    Komulainen, J., Hadid, A., Pietikainen, M., Anjos, A., Marcel, S.: Complementary countermeasures for detecting scenic face spoofing attacks. In: 2013 International Conference on Biometrics (ICB), pp. 1–7. IEEE (2013). http://ieeexplore.ieee.org/document/6612968/
  31. 31.
    Li, L., Correia, P.L., Hadid, A.: Face recognition under spoofing attacks: countermeasures and research directions. IET Biom. 7(1), 3–14 (2018). http://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2017.0089CrossRefGoogle Scholar
  32. 32.
    Li, L., Feng, X., Boulkenafet, Z., Xia, Z., Li, M., Hadid, A.: An original face anti-spoofing approach using partial convolutional neural network. In: 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2016). http://ieeexplore.ieee.org/document/7821013/
  33. 33.
    Maatta, J., Hadid, A., Pietikainen, M.: Face spoofing detection from single images using micro-texture analysis. In: 2011 International Joint Conference on Biometrics (IJCB). pp. 1–7. IEEE (2011). http://ieeexplore.ieee.org/document/6117510/
  34. 34.
    Manjani, I., Tariyal, S., Vatsa, M., Singh, R., Majumdar, A.: Detecting silicone mask-based presentation attack via deep dictionary learning. IEEE Trans. Inf. Forensics Secur. 12(7), 1713–1723 (2017). http://ieeexplore.ieee.org/document/7867821/CrossRefGoogle Scholar
  35. 35.
    Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using texture and local shape analysis. IET Biom. 1(1), 3 (2012). http://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2011.0009CrossRefGoogle Scholar
  36. 36.
    Menotti, D., et al.: Deep Representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015). http://ieeexplore.ieee.org/document/7029061/CrossRefGoogle Scholar
  37. 37.
    Asim, M., Ming, Z., Javed, M.Y.: CNN based spatio-temporal feature extraction for face anti-spoofing. In: 2017 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 234–238. IEEE (2017). http://ieeexplore.ieee.org/document/7984552/
  38. 38.
    Pan, S., Deravi, F.: Facial action units for presentation attack detection. In: 2017 Seventh International Conference on Emerging Security Technologies (EST), pp. 62–67. IEEE (2017). http://ieeexplore.ieee.org/document/8090400/
  39. 39.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Peng, F., Qin, L., Long, M.: POSTER: non-intrusive face spoofing detection based on guided filtering and image quality analysis. In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016. LNICST, vol. 198, pp. 774–777. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59608-2_49CrossRefGoogle Scholar
  41. 41.
    Peng, F., Qin, L., Long, M.: Face presentation attack detection using guided scale texture. Multimed. Tools Appl. 77(7), 8883–8909 (2018).  https://doi.org/10.1007/s11042-017-4780-0CrossRefGoogle Scholar
  42. 42.
    Pinto, A., Pedrini, H., Schwartz, W.R., Rocha, A.: Face spoofing detection through visual codebooks of spectral temporal cubes. IEEE Trans. Image Process. 24(12), 4726–4740 (2015). http://ieeexplore.ieee.org/document/7185398/MathSciNetCrossRefGoogle Scholar
  43. 43.
    Rehman, Y.A.U., Po, L.M., Liu, M.: LiveNet: Improving features generalization for face liveness detection using convolution neural networks. Expert Syst. Appl. 108, 159–169 (2018). http://linkinghub.elsevier.com/retrieve/pii/S0957417418302811CrossRefGoogle Scholar
  44. 44.
    Stuchi, J.A., et al.: Improving image classification with frequency domain layers for feature extraction. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2017). http://ieeexplore.ieee.org/document/8168168/
  45. 45.
    Tian, Y., Xiang, S.: Detection of video-based face spoofing using LBP and multiscale DCT. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Liu, F. (eds.) IWDW 2016. LNCS, vol. 10082, pp. 16–28. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53465-7_2CrossRefGoogle Scholar
  46. 46.
    Tirunagari, S., Poh, N., Windridge, D., Iorliam, A., Suki, N., Ho, A.T.S.: Detection of face spoofing using visual dynamics. IEEE Trans. Inf. Forensics Secur. 10(4), 762–777 (2015). http://ieeexplore.ieee.org/document/7047832/CrossRefGoogle Scholar
  47. 47.
    Tu, X., Fang, Y.: Ultra-deep neural network for face anti-spoofing. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) Neural Information Processing, vol. 10635, pp. 686–695. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70096-0_70CrossRefGoogle Scholar
  48. 48.
    Wang, S.Y., Yang, S.H., Chen, Y.P., Huang, J.W.: Face liveness detection based on skin blood flow analysis. Symmetry 9(12), 305 (2017). http://www.mdpi.com/2073-8994/9/12/305CrossRefGoogle Scholar
  49. 49.
    Kim, W., Suh, S., Han, J.-J.: Face liveness detection from a single image via diffusion speed model. IEEE Trans. Image Process. 24(8), 2456–2465 (2015). http://ieeexplore.ieee.org/document/7084662/MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhang, L.B., Peng, F., Qin, L., Long, M.: Face spoofing detection based on color texture markov feature and support vector machine recursive feature elimination. J. Vis. Commun. Image Represent. 51, 56–69 (2018). http://linkinghub.elsevier.com/retrieve/pii/S1047320318300014CrossRefGoogle Scholar
  51. 51.
    Zhao, X., Lin, Y., Heikkila, J.: Dynamic texture recognition using volume local binary count patterns with an application to 2D face spoofing detection. IEEE Trans. Multimed. 20(3), 552–566 (2018). http://ieeexplore.ieee.org/document/8030131/CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.FEUP - Faculty of Engineering of the University of PortoPortoPortugal
  2. 2.INEGI - Institute of Science and Innovation in Mechanical and Industrial Engineering, Campus da FEUPPortoPortugal
  3. 3.INESC TEC - INESC Technology and Science (formerly INESC Porto), Campus da FEUPPortoPortugal

Personalised recommendations