Detection of Osteoarthritis by Gap and Shape Analysis of Knee-Bone X-ray

  • Sabyasachi Mukherjee
  • Oishila BandyopadhyayEmail author
  • Arindam Biswas
  • Bhargab B. Bhattacharya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11255)


Osteoarthritis in knee-joints of humans can be diagnosed by analyzing an X-ray image of the bone. The changes in the shape of the concerned bones (tibia and femur), and the variation in joint-gap, provide markers of such a bone disease. In this paper, digital-geometric techniques are deployed to analyze the X-ray image for identifying the change in shape and alignment of knee-bones, if any. The gap between the two sections of a knee-joint is checked for uniformity over the entire length. The shape of bone can also be correlated to the presence of osteophytes, if any. For automated diagnosis of osteoarthritis, the given X-ray image is analyzed to detect the presence of any abnormality in the bone-contour or gap. We use the concept of chain code and relaxed digital straight-line segments (RDSS) in our analysis.


Bone X-ray image Chain code Osteoarthritis Shape analysis 


  1. 1.
    Anifah, L., Purnama, K.E., Hariadi, M., Purnomo, M.H.: Automatic segmentation of impaired joint space area for osteoarthritis knee on X-ray image using gabor filter based morphology process. J. Technol. Sci. 22(3), 159–165 (2011)Google Scholar
  2. 2.
    Bandyopadhyay, O., Biswas, A., Bhattacharya, B.B.: Long-bone fracture detection in digital X-ray images based on concavity index. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 212–223. Springer, Cham (2014). Scholar
  3. 3.
    Bandyopadhyay, O., Biswas, A., Bhattacharya, B.B.: Long-bone fracture detection in digital X-ray images based on digital-geometric techniques. Comput. Methods Programs Biomed. 123, 2–14 (2016)CrossRefGoogle Scholar
  4. 4.
    Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1590–1602 (2007)CrossRefGoogle Scholar
  5. 5.
    Buckland-Wright, C.: Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthr. Cartil. 12, S10–S19 (2004)CrossRefGoogle Scholar
  6. 6.
    Chanda, B., Majumdar, D.D.: Digital Image Processing and Analysis. Prentice Hall of India, New Delhi (2007)Google Scholar
  7. 7.
    Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. 10, 260–268 (1961)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kohn, M.D., Sassoon, A.A., Fernando, N.D.: Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin. Orthop. Relat. Res. 474(8), 1886–93 (2016)CrossRefGoogle Scholar
  9. 9.
    Rosenfeld, A.: Digital straight line segments. IEEE Trans. Comput. 23, 1264–1269 (1974)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sampath, S.A., Lewis, S., Fosco, M., Tigani, D.: Trabecular orientation in the human femur and tibia and the relationship with lower limb alignment for patients with osteoarthritis of the knee. J. Biomech. 48, 1213–1218 (2015)CrossRefGoogle Scholar
  11. 11.
    Shamir, L., et al.: Knee X-ray image analysis method for automated detection of osteoarthritis. IEEE Trans. Biomed. Eng. 56(2), 407–415 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sabyasachi Mukherjee
    • 1
  • Oishila Bandyopadhyay
    • 2
    Email author
  • Arindam Biswas
    • 1
  • Bhargab B. Bhattacharya
    • 3
  1. 1.Indian Institute of Engineering Science and Technology, ShibpurHowrahIndia
  2. 2.Indian Institute of Information Technology KalyaniKalyaniIndia
  3. 3.Indian Statistical InstituteKolkataIndia

Personalised recommendations