Advertisement

On Gaps in Digital Objects

  • Lidija ČomićEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11255)

Abstract

Different formulae were proposed in the literature for the number of gaps in digital objects. We give several new formulae for the number of 0-gaps in 2D, based on the known connection between the number of 0-gaps and the Euler characteristic of 2D digital objects. We also present two new, short and intuitive proofs of one of the two known equivalent formulae for the number of \((n-2)\)-gaps in nD digital objects.

Keywords

Digital objects Digital topology Gaps Euler characteristic 

Notes

Acknowledgement

This work has been partially supported by the Ministry of Education and Science of the Republic of Serbia within the Project No. 34014.

References

  1. 1.
    Andres, E., Acharya, R., Sibata, C.H.: Discrete analytical hyperplanes. CVGIP: Graph. Model Image Process. 59(5), 302–309 (1997)Google Scholar
  2. 2.
    Bishnu, A., Bhattacharya, B.B., Kundu, M.K., Murthy, C.A., Acharya, T.: On-chip computation of Euler number of a binary image for efficient database search. In: Proceedings of the 2001 International Conference on Image Processing, ICIP, pp. 310–313 (2001)Google Scholar
  3. 3.
    Bishnu, A., Bhattacharya, B.B., Kundu, M.K., Murthy, C.A., Acharya, T.: A pipeline architecture for computing the Euler number of a binary image. J. Syst. Archit. 51(8), 470–487 (2005)CrossRefGoogle Scholar
  4. 4.
    Boutry, N., Géraud, T., Najman, L.: How to make nD images well-composed without interpolation. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, pp. 2149–2153 (2015)Google Scholar
  5. 5.
    Bribiesca, E.: Computation of the Euler number using the contact perimeter. Comput. Math. Appl. 60(5), 1364–1373 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discrete Appl. Math. 157(3), 452–463 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brimkov, V.E., Barneva, R.: Linear time constant-working space algorithm for computing the genus of a digital object. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 669–677. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89639-5_64CrossRefGoogle Scholar
  8. 8.
    Brimkov, V.E., Klette, R.: Border and surface tracing - theoretical foundations. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 577–590 (2008)CrossRefGoogle Scholar
  9. 9.
    Brimkov, V.E., Maimone, A., Nordo, G.: An explicit formula for the number of tunnels in digital objects. CoRR abs/cs/0505084 (2005). http://arxiv.org/abs/cs/0505084
  10. 10.
    Brimkov, V.E., Maimone, A., Nordo, G.: Counting gaps in binary pictures. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 16–24. Springer, Heidelberg (2006).  https://doi.org/10.1007/11774938_2CrossRefGoogle Scholar
  11. 11.
    Brimkov, V.E., Moroni, D., Barneva, R.: Combinatorial relations for digital pictures. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 189–198. Springer, Heidelberg (2006).  https://doi.org/10.1007/11907350_16CrossRefzbMATHGoogle Scholar
  12. 12.
    Brimkov, V.E., Nordo, G., Barneva, R.P., Maimone, A.: Genus and dimension of digital images and their time- and space-efficient computation. Int. J. Shape Model. 14(2), 147–168 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, L.: Determining the number of holes of a 2D digital component is easy. CoRR abs/1211.3812 (2012)Google Scholar
  14. 14.
    Chen, M., Yan, P.: A fast algorithm to calculate the Euler number for binary images. Pattern Recogn. Lett. 8(5), 295–297 (1988)CrossRefGoogle Scholar
  15. 15.
    Cohen-Or, D., Kaufman, A.E.: 3D line voxelization and connectivity control. IEEE Comput. Graph. Appl. 17(6), 80–87 (1997)CrossRefGoogle Scholar
  16. 16.
    Čomić, L., Magillo, P.: Repairing 3D binary images using the BCC grid with a 4-valued combinatorial coordinate system. Inf. Sci., to appearGoogle Scholar
  17. 17.
    Čomić, L., Nagy, B.: A topological coordinate system for the diamond cubic grid. Acta Crystallogr. Sect. A 72(5), 570–581 (2016)CrossRefGoogle Scholar
  18. 18.
    Čomić, L., Nagy, B.: A combinatorial coordinate system for the body-centered cubic grid. Graph. Models 87, 11–22 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Čomić, L., Nagy, B.: A topological 4-coordinate system for the face centered cubic grid. Pattern Recogn. Lett. 83, 67–74 (2016)CrossRefGoogle Scholar
  20. 20.
    Dey, S., Bhattacharya, B.B., Kundu, M.K., Acharya, T.: A Fast algorithm for computing the euler number of an image and its VLSI implementation. In: 13th International Conference on VLSI Design (VLSI Design 2000), pp. 330–335 (2000)Google Scholar
  21. 21.
    Dey, S., Bhattacharya, B.B., Kundu, M.K., Bishnu, A., Acharya, T.: A Co-processor for computing the Euler number of a binary image using divide-and-conquer strategy. Fundam. Inf. 76(1–2), 75–89 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Díaz-de-León S., J.L., Sossa-Azuela, J.H.: On the computation of the Euler number of a binary object. Pattern Recognit. 29(3), 471–476 (1996)CrossRefGoogle Scholar
  23. 23.
    Dyer, C.R.: Computing the Euler number of an image from Its quadtree. Comput. Graph. Image Process. 13, 270–276 (1980)CrossRefGoogle Scholar
  24. 24.
    Françon, J., Schramm, J.-M., Tajine, M.: Recognizing arithmetic straight lines and planes. In: Miguet, S., Montanvert, A., Ubéda, S. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 139–150. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-62005-2_12CrossRefGoogle Scholar
  25. 25.
    Gray, S.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20, 551–561 (1971)CrossRefGoogle Scholar
  26. 26.
    He, L., Chao, Y.: A very fast algorithm for simultaneously performing connected-component labeling and Euler number computing. IEEE Trans. Image Process. 24(9), 2725–2735 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    He, L., Chao, Y., Suzuki, K.: An algorithm for connected-component labeling, hole labeling and Euler number computing. J. Comput. Sci. Technol. 28(3), 468–478 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    He, L., Yao, B., Zhao, X., Yang, Y., Chao, Y., Ohta, A.: A graph-theory-based algorithm for Euler number computing. IEICE Trans. 98–D(2), 457–461 (2015)CrossRefGoogle Scholar
  29. 29.
    Imiya, A., Eckhardt, U.: The Euler characteristic of discrete object. In: Ahronovitz, E., Fiorio, C. (eds.) DGCI 1997. LNCS, vol. 1347, pp. 161–174. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0024838CrossRefGoogle Scholar
  30. 30.
    Kenmochi, Y., Imiya, A.: Combinatorial topologies for discrete planes. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 144–153. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39966-7_13CrossRefzbMATHGoogle Scholar
  31. 31.
    Klette, R., Rosenfeld, A.: Digital Geometry. Geometric Methods for Digital Picture Analysis. Morgan Kaufmann Publishers, San Francisco (2004)zbMATHGoogle Scholar
  32. 32.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graphi. Image Process. 48(3), 357–393 (1989)CrossRefGoogle Scholar
  33. 33.
    Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topology and Algorithms for Computer Imagery). Editing House Dr. Bärbel Kovalevski, Berlin (2008)Google Scholar
  34. 34.
    Lachaud, J.-O.: Coding cells of digital spaces: a framework to write generic digital topology algorithms. Electron. Notes Discrete Math. 12, 337–348 (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Latecki, L.J.: 3D well-composed pictures. CVGIP: Graph. Model Image Process. 59(3), 164–172 (1997)Google Scholar
  36. 36.
    Latecki, L.J., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)CrossRefGoogle Scholar
  37. 37.
    Lin, X., Sha, Y., Ji, J., Wang, Y.: A proof of image Euler number formula. Sci. China Ser. F: Inf. Sci. 49(3), 364–371 (2006)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Maimone, A., Nordo, G.: On 1-gaps in 3D digital objects. Filomat 22(3), 85–91 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Maimone, A., Nordo, G.: A formula for the number of \((n-2)\)-gaps in digital \(n\)-objects. Filomat 27(4), 547–557 (2013)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Maimone, A., Nordo, G.: A note on dimension and gaps in digital geometry. Filomat 31(5), 1215–1227 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, London (1982)zbMATHGoogle Scholar
  42. 42.
    Sossa, H.: On the number of holes of a 2-D binary object. In: 14th IAPR International Conference on Machine Vision Applications, MVA, pp. 299–302 (2015)Google Scholar
  43. 43.
    Sossa-Azuela, J.H., Cuevas-Jiménez, E.B., Zaldivar-Navarro, D.: Alternative way to compute the Euler number of a binary image. J. Appl. Res. Technol. 9, 335–341 (2011)Google Scholar
  44. 44.
    Sossa-Azuela, J., Santiago-Montero, R., Pérez-Cisneros, M., Rubio-Espino, E.: Computing the Euler number of a binary image based on a vertex codification. J. Appl. Res. Technol. 11(3), 360–370 (2013)CrossRefGoogle Scholar
  45. 45.
    Sossa-Azuela, J., Santiago-Montero, R., Pérez-Cisneros, M., Rubio-Espino, E.: Alternative formulations to compute the binary shape Euler number. IET Comput. Vis. 8(3), 171–181 (2014)CrossRefGoogle Scholar
  46. 46.
    Yagel, R., Cohen, D., Kaufman, A.E.: Discrete ray tracing. IEEE Comput. Graph. Appl. 12(5), 19–28 (1992)CrossRefGoogle Scholar
  47. 47.
    Yao, B., et al.: An efficient strategy for bit-quad-based Euler number computing algorithm. IEICE Trans. Inf. Syst. E97.D(5), 1374–1378 (2014)CrossRefGoogle Scholar
  48. 48.
    Zenzo, S.D., Cinque, L., Levialdi, S.: Run-based algorithms for binary image analysis and processing. IEEE Trans. Pattern Anal. Mach. Intell. 18(1), 83–89 (1996)CrossRefGoogle Scholar
  49. 49.
    Zhang, Z., Moss, R.H., Stoecker, W.V.: A novel morphological operator to calculate Euler number. In: Medical Imaging and Augmented Reality: First International Workshop, MIAR, pp. 226–228 (2001)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations