Skip to main content

Dynamical Structure Factor of the Lieb–Liniger Model and Drag Force Due to a Potential Barrier

  • Chapter
  • First Online:
Correlations in Low-Dimensional Quantum Gases

Part of the book series: Springer Theses ((Springer Theses))

  • 283 Accesses

Abstract

In this chapter, whose original results are mostly based on Refs. [1, 2], I take the next step towards the full characterization of a 1D Bose gas through its correlation functions. Going beyond static correlation functions, dynamical ones in energy-momentum space provide another possible way to understand a system, but their richer structure makes them harder to evaluate, and their theoretical study involves fairly advanced techniques. Two observables usually attract peculiar attention: the Fourier transform of Green’s function, a.k.a. the spectral function, and of the density-density correlations, known as the dynamical structure factor. The latter is quite sensitive to both interactions and dimensionality, providing an ideal observable to probe their joint effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Lang, F. Hekking, A. Minguzzi, Dynamic structure factor and drag force in a one-dimensional Bose gas at finite temperature. Phys. Rev. A 91, 063619 (2015)

    Article  ADS  Google Scholar 

  2. G. Lang, F. Hekking, A. Minguzzi, Ground-state energy and excitation spectrum of the Lieb–Liniger model: accurate analytical results and conjectures about the exact solution. SciPost Phys. 3, 003 (2017)

    Article  ADS  Google Scholar 

  3. A.J. Leggett, Superfluidity. Rev. Mod. Phys. 71, S318 (1999)

    Article  Google Scholar 

  4. S. Balibar, The discovery of superfluidity. J. Low Temp. Phys. 146, 441–470 (2007)

    Article  ADS  Google Scholar 

  5. A. Griffin, New light on the intriguing history of superfluidity in liquid \({^4}\)He. J. Phys. Condens. Matter 21, 164220 (2009)

    Article  ADS  Google Scholar 

  6. M. Albert, Superfluidité et localisation quantique dans les condensats de Bose-Einstein unidimensionnels. Ph.D. thesis, Paris XI University (2009)

    Google Scholar 

  7. J.F. Allen, H. Jones, New phenomena connected with heat flow in helium II. Nature 141, 243–244 (1938)

    Article  ADS  Google Scholar 

  8. W.H. Keesom, A.P. Keesom, New measurements on the specific heat of liquid helium. Physica 2, 557 (1935)

    Article  ADS  Google Scholar 

  9. P. Kapitza, Viscosity of liquid helium below the \(\lambda \)-point. Nature 141, 74 (1938)

    Article  ADS  Google Scholar 

  10. J.F. Allen, A.D. Misener, Flow of liquid helium II. Nature 141, 75 (1938)

    Article  ADS  Google Scholar 

  11. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Microscopic theory of superconductivity. Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. D.D. Osheroff, R.C. Richardson, D.M. Lee, Evidence for a new phase of solid He\(^3\). Phys. Rev. Lett. 28, 885 (1972)

    Article  ADS  Google Scholar 

  14. A.J. Leggett, A theoretical description of the new phases of \({^3}\)He. Rev. Mod. Phys. 47, 331 (1975)

    Article  ADS  Google Scholar 

  15. L. Tisza, The theory of liquid helium. Phys. Rev. 72, 838 (1947)

    Article  ADS  Google Scholar 

  16. F. London, The \(\lambda \)-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature 141, 643–644 (1938)

    Article  ADS  Google Scholar 

  17. L. Tisza, Transport phenomena in helium II. Nature 141, 913–913 (1938)

    Article  ADS  Google Scholar 

  18. L.D. Landau, The theory of superfluidity of helium II, J. Phys. (Moscow) 5, 71 (1941)

    Google Scholar 

  19. C. Raman, M. Köhl, R. Onofrio, D.S. Durfee, C.E. Kuklewicz, Z. Hadzibabic, W. Ketterle, Evidence for a critical velocity in a Bose-Einstein condensed gas. Phys. Rev. Lett. 83, 2502 (1999)

    Article  ADS  Google Scholar 

  20. R. Onofrio, C. Raman, J.M. Vogels, J.R. Abo-Shaeer, A.P. Chikkatur, W. Ketterle, Observation of superfluid flow in a Bose-Einstein condensed gas. Phys. Rev. Lett. 85, 2228 (2000)

    Article  ADS  Google Scholar 

  21. D.E. Miller, J.K. Chin, C.A. Stan, Y. Liu, W. Setiawan, C. Sanner, W. Ketterle, Critical velocity for superfluid flow across the BEC-BCS crossover. Phys. Rev. Lett. 99, 070402 (2007)

    Article  ADS  Google Scholar 

  22. W. Weimer, K. Morgener, V.P. Singh, J. Siegl, K. Hueck, N. Luick, L. Mathey, H. Moritz, Critical velocity in the BEC-BCS crossover. Phys. Rev. Lett. 114, 095301 (2015)

    Article  ADS  Google Scholar 

  23. M. Delehaye, S. Laurent, I. Ferrier-Barbut, S. Jin, F. Chevy, C. Salomon, Critical velocity and dissipation of an ultracold Bose-Fermi counterflow. Phys. Rev. Lett. 115, 265303 (2015)

    Article  ADS  Google Scholar 

  24. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  25. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino, A. Bramati, Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009)

    Article  MATH  Google Scholar 

  26. T. Boulier, E. Cancellieri, N.D. Sangouard, Q. Glorieux, A.V. Kavokin, D.M. Whittaker, E. Giacobino, A. Bramati, Injection of orbital angular momentum and storage of quantized vortices in polariton superfluids. Phys. Rev. Lett. 116, 116402 (2016)

    Article  ADS  Google Scholar 

  27. A. Gallemí, M. Guilleumas, M. Richard, A. Minguzzi, Interaction-enhanced flow of a polariton persistent current in a ring (2017), arXiv:1707.07910 [cond-mat.quant-gas]

  28. G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K.S. Daskalakis, L. Dominici, M. De Giorgi, S.A. Maier, G. Gigli, S. Kéna-Cohen, D. Sanvitto, Room-temperature superfluidity in a polariton condensate. Nat. Phys. 2228 (2017)

    Google Scholar 

  29. J. Keeling, N.G. Berloff, Condensed-matter physics: going with the flow. Nature 457, 273–274 (2009)

    Article  ADS  Google Scholar 

  30. G.B. Hess, W.M. Fairbank, Measurements of angular momentum in superfluid helium. Phys. Rev. Lett. 19, 216 (1967)

    Article  ADS  Google Scholar 

  31. L. Onsager, Statistical hydrodynamics. Il Nuovo Cimento 6, 279–287 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Bogoliubov, On the theory of superfluidity. J. Phys. USSR 11, 23 (1947)

    MathSciNet  Google Scholar 

  33. R. Desbuquois, L. Chomaz, T. Yefsah, J. Léonard, J. Beugnon, C. Weitenberg, J. Dalibard, Superfluid behaviour of a two-dimensional Bose gas. Nat. Phys. 8, 645 (2012)

    Article  Google Scholar 

  34. V.P. Singh, C. Weitenberg, J. Dalibard, L. Mathey, Superfluidity and relaxation dynamics of a laser-stirred two-dimensional Bose gas. Phys. Rev. A 95, 043631 (2017)

    Article  ADS  Google Scholar 

  35. Y. Castin, I. Ferrier-Barbut, C. Salomon, La vitesse critique de Landau d’une particule dans un superfluide de fermions. C.R. Phys. 16, 241–253 (2015)

    Article  ADS  Google Scholar 

  36. R.P. Feynman, Chapter II application of quantum mechanics to liquid helium, Progress in Low Temperature Physics, vol. 1, (Elsevier, 1955), pp. 17–53

    Google Scholar 

  37. J.S. Stiessberger, W. Zwerger, Critical velocity of superfluid flow past large obstacles in Bose-Einstein condensates. Phys. Rev. A 62, 061601(R) (2000)

    Article  ADS  Google Scholar 

  38. V. Hakim, Nonlinear Schrödinger flow past an obstacle in one dimension. Phys. Rev. E 55, 2835 (1997)

    Article  ADS  Google Scholar 

  39. N. Pavloff, Breakdown of superfluidity of an atom laser past an obstacle. Phys. Rev. A 66, 013610 (2002)

    Article  ADS  Google Scholar 

  40. P.O. Fedichev, G.V. Shlyapnikov, Critical velocity in cylindrical Bose-Einstein condensates. Phys. Rev. A 63, 045601 (2001)

    Article  ADS  Google Scholar 

  41. G.E. Astrakharchik, L.P. Pitaevskii, Motion of a heavy impurity through a Bose-Einstein condensate. Phys. Rev. A 70, 013608 (2004)

    Article  ADS  Google Scholar 

  42. P.-É. Larré, I. Carusotto, Optomechanical signature of a frictionless flow of superfluid light. Phys. Rev. A 91, 053809 (2015)

    Article  ADS  Google Scholar 

  43. A.Y. Cherny, J.-S. Caux, J. Brand, Theory of superfluidity and drag force in the one-dimensional Bose gas. Front. Phys. 7(1), 54–71 (2012)

    Article  Google Scholar 

  44. J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, W. Ketterle, Bragg spectroscopy of a Bose-Einstein condensate. Phys. Rev. Lett. 82, 4569 (1999)

    Article  ADS  Google Scholar 

  45. D.M. Stamper-Kurn, A.P. Chikkatur, A. Görlitz, S. Inouye, S. Gupta, D.E. Pritchard, W. Ketterle, Excitation of phonons in a Bose-Einstein condensate by light scattering. Phys. Rev. Lett. 83, 2876 (1999)

    Article  ADS  Google Scholar 

  46. P. Vignolo, A. Minguzzi, M.P. Tosi, Light scattering from a degenerate quasi-one-dimensional confined gas of noninteracting fermions. Phys. Rev. A 64, 023421 (2001)

    Article  ADS  Google Scholar 

  47. J. Brand, A.Y. Cherny, Dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit. Phys. Rev. A 72, 033619 (2005)

    Article  ADS  Google Scholar 

  48. N.W. Ashcroft, N.D. Mermin, Solid State Physics, (Brooks/Cole, Pacific Grove, CA, 1976)

    Google Scholar 

  49. P. Engels, C. Atherton, Stationary and nonstationary fluid flow of a Bose-Einstein condensate through a penetrable barrier. Phys. Rev. Lett. 99, 160405 (2007)

    Article  ADS  Google Scholar 

  50. D. Dries, S.E. Pollack, J.M. Hitchcock, R.G. Hulet, Dissipative transport of a Bose-Einstein condensate. Phys. Rev. A 82, 033603 (2010)

    Article  ADS  Google Scholar 

  51. V.P. Singh, W. Weimer, K. Morgener, J. Siegl, K. Hueck, N. Luick, H. Moritz, L. Mathey, Probing superfluidity of Bose-Einstein condensates via laser stirring. Phys. Rev. A 93, 023634 (2016)

    Article  ADS  Google Scholar 

  52. F. Pinsker, Gaussian impurity moving through a Bose-Einstein superfluid. Phys. B 521, 36–42 (2017)

    Article  ADS  Google Scholar 

  53. A.Y. Cherny, J. Brand, Polarizability and dynamic structure factor of the one-dimensional Bose gas near the Tonks-Girardeau limit at finite temperatures. Phys. Rev. A 73, 023612 (2006)

    Article  ADS  Google Scholar 

  54. J.-S. Caux, Correlation functions of integrable models: a description of the ABACUS algorithm. J. Math. Phys. 50, 095214 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. J.-S. Caux, P. Calabrese, Dynamical density-density correlations in the one-dimensional Bose gas. Phys. Rev. A 74, 031605(R) (2006)

    Article  ADS  Google Scholar 

  56. M. Panfil, J.-S. Caux, Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas. Phys. Rev. A 89, 033605 (2014)

    Article  ADS  Google Scholar 

  57. M. Pustilnik, M. Khodas, A. Kamenev, L.I. Glazman, Dynamic response of one-dimensional interacting fermions. Phys. Rev. Lett. 96, 196405 (2006)

    Article  ADS  Google Scholar 

  58. M. Khodas, M. Pustilnik, A. Kamenev, L.I. Glazman, Fermi-Luttinger liquid: spectral function of interacting one-dimensional fermions. Phys. Rev. B 76, 155402 (2007)

    Article  ADS  Google Scholar 

  59. M. Khodas, M. Pustilnik, A. Kamenev, L.I. Glazman, Dynamics of excitations in a one-dimensional Bose liquid. Phys. Rev. Lett. 99, 110405 (2007)

    Article  ADS  Google Scholar 

  60. A. Imambekov, L.I. Glazman, Exact exponents of edge singularities in dynamic correlation functions of 1D Bose gas. Phys. Rev. Lett. 100, 206805 (2008)

    Article  ADS  Google Scholar 

  61. A. Imambekov, L.I. Glazman, Universal theory of nonlinear Luttinger liquids. Science 323, 228–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Calabrese, J.-S. Caux, Dynamics of the attractive 1D Bose gas: analytical treatment from integrability. J. Stat. Mech. P08032 (2007)

    Google Scholar 

  63. A.Y. Cherny, J. Brand, Approximate expression for the dynamic structure factor in the Lieb-Liniger model. J. Phys. Conf. Ser. 129, 012051 (2008)

    Article  Google Scholar 

  64. G. Bertaina, M. Motta, M. Rossi, E. Vitali, D.E. Galli, One-dimensional Liquid \({^4}\) He: dynamical properties beyond Luttinger-liquid theory. Phys. Rev. Lett. 116, 135302 (2016)

    Google Scholar 

  65. N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C. Fort, J.-S. Caux, Dynamical structure factor of one-dimensional Bose gases: experimental signatures of beyond-Luttinger-liquid physics. Phys. Rev. A 91, 043617 (2015)

    Google Scholar 

  66. F. Meinert, M. Panfil, M.J. Mark, K. Lauber, J.-S. Caux, H.-C. Nägerl, Probing the excitations of a Lieb-Liniger gas from weak to strong coupling. Phys. Rev. Lett. 115, 085301 (2015)

    Article  ADS  Google Scholar 

  67. A.Y. Cherny, J.-S. Caux, J. Brand, Decay of superfluid currents in the interacting one-dimensional Bose gas. Phys. Rev. A 80, 043604 (2009)

    Article  ADS  Google Scholar 

  68. A.Y. Cherny, J. Brand, Dynamic and static density-density correlations in the one-dimensional Bose gas: exact results and approximations. Phys. Rev. A 79, 043607 (2009)

    Article  ADS  Google Scholar 

  69. M.A. Cazalilla, Bosonizing one-dimensional cold atomic gases. J. Phys. B Atomic, Mol. Opt. Phys. 37, 7 S1 (2004)

    Article  ADS  Google Scholar 

  70. M. Zvonarev, Correlations in 1D boson and fermion systems: exact results, Ph.D. Thesis, Copenhagen University, Denmark (2005)

    Google Scholar 

  71. Z. Ristivojevic, Excitation spectrum of the Lieb-Liniger model. Phys. Rev. Lett. 113, 015301 (2014)

    Article  ADS  Google Scholar 

  72. M. Wadati, Solutions of the Lieb-Liniger integral equation. J. Phys. Soc. Jpn. 71, 2657 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  74. A. Shashi, L.I. Glazman, J.-S. Caux, A. Imambekov, Nonuniversal prefactors in the correlation functions of one-dimensional quantum liquids. Phys. Rev. B 84, 045408 (2011)

    Article  ADS  Google Scholar 

  75. A. Shashi, M. Panfil, J.-S. Caux, A. Imambekov, Exact prefactors in static and dynamic correlation functions of one-dimensional quantum integrable models: applications to the Calogero-Sutherland, Lieb-Liniger, and XXZ models. Phys. Rev. B 85, 155136 (2012)

    Article  ADS  Google Scholar 

  76. E.H. Lieb, Exact analysis of an interacting Bose gas. II. the excitation spectrum. Phys. Rev. 130, 1616 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. P.P. Kulish, S.V. Manakov, L.D. Fadeev, Comparison of the exact quantum and quasiclassical results for the nonlinear Schrödinger equation. Theor. Math. Phys. 28, 615–620 (1976)

    Article  Google Scholar 

  78. M. Khodas, A. Kamenev, L.I. Glazman, Photosolitonic effect. Phys. Rev. A 78, 053630 (2008)

    Article  ADS  Google Scholar 

  79. T. Karpiuk, P. Deuar, P. Bienias, E. Witkowska, K. Pawłowski, M. Gajda, K. Rza̧\({\dot{z}}\)ewski, M. Brewczyk, Spontaneous solitons in the thermal equilibrium of a quasi-1D Bose gas. Phys. Rev. Lett. 109, 205302 (2012)

    Google Scholar 

  80. A. Syrwid, K. Sacha, Lieb-Liniger model: emergence of dark solitons in the course of measurements of particle positions. Phys. Rev. A 92, 032110 (2015)

    Article  ADS  Google Scholar 

  81. T. Karpiuk, T. Sowiński, M. Gajda, K. Rza̧\({\dot{z}}\)ewski, M. Brewczyk, Correspondence between dark solitons and the type II excitations of the Lieb-Liniger model. Phys. Rev. A 91, 013621 (2015)

    Google Scholar 

  82. J. Sato, R. Kanamoto, E. Kaminishi, T. Deguchi, Quantum states of dark solitons in the 1D Bose gas. New J. Phys. 18, 075008 (2016)

    Article  ADS  Google Scholar 

  83. M. Pustilnik, K.A. Matveev, Low-energy excitations of a one-dimensional Bose gas with weak contact repulsion. Phys. Rev. B 89, 100504(R) (2014)

    Article  ADS  Google Scholar 

  84. J.C. Cooke, A solution of Tranter’s dual integral equations problem. Q. J. Mech. Appl. Math. 9, 103–110 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  85. L. Farina, Water wave radiation by a heaving submerged horizontal disk very near the free surface. Phys. Fluids 22, 057102 (2010)

    Article  ADS  MATH  Google Scholar 

  86. K.A. Matveev, A. Furusaki, Decay of fermionic quasiparticles in one-dimensional quantum liquids. Phys. Rev. Lett. 111, 256401 (2013)

    Article  ADS  Google Scholar 

  87. Z. Ristivojevic, K.A. Matveev, Decay of Bogoliubov excitations in one-dimensional Bose gases. Phys. Rev. B 94, 024506 (2016)

    Article  ADS  Google Scholar 

  88. K.A. Matveev, M. Pustilnik, Effective mass of elementary excitations in Galilean-invariant integrable models. Phys. Rev. B 94, 115436 (2016)

    Article  ADS  Google Scholar 

  89. S.S. Shamailov, J. Brand, Dark-soliton-like excitations in the Yang-Gaudin gas of attractively interacting fermions. New J. Phys. 18, 075004 (2016)

    Article  ADS  Google Scholar 

  90. M. Motta, E. Vitali, M. Rossi, D.E. Galli, G. Bertaina, Dynamical structure factor of one-dimensional hard rods. Phys. Rev. A 94, 043627 (2016)

    Article  ADS  Google Scholar 

  91. A. Petković, Z. Ristivojevic, Spectrum of elementary excitations in Galilean-invariant integrable models. Phys. Rev. Lett. 120, 165302 (2018)

    Article  ADS  Google Scholar 

  92. P.-S. He, Y.-H. Zhu, W.-M. Liu, Drag force on a moving impurity in a spin-orbit-coupled Bose-Einstein condensate. Phys. Rev. A 89, 053615 (2014)

    Article  ADS  Google Scholar 

  93. R. Liao, O. Fialko, J. Brand, U. Zülicke, Noncollinear drag force in Bose-Einstein condensates with Weyl spin-orbit coupling. Phys. Rev. A 93, 023625 (2016)

    Article  ADS  Google Scholar 

  94. M. Albert, T. Paul, N. Pavloff, P. Leboeuf, Breakdown of the superfluidity of a matter wave in a random environment. Phys. Rev. A 82, 011602(R) (2010)

    Article  ADS  Google Scholar 

  95. A.Y. Cherny, J.-S. Caux, J. Brand, Landau instability and mobility edges of the interacting one-dimensional Bose gas in weak random potentials. J. Phys. B Atomic Mol. Opt. Phys. 51, 015301 (2018)

    Article  ADS  Google Scholar 

  96. D.C. Roberts, Y. Pomeau, Casimir-like force arising from quantum fluctuations in a slowly moving dilute Bose-Einstein condensate. Phys. Rev. Lett. 95, 145303 (2005)

    Article  ADS  Google Scholar 

  97. A.G. Sykes, M.J. Davis, D.C. Roberts, Drag force on an impurity below the superfluid critical velocity in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. Lett. 103, 085302 (2009)

    Article  ADS  Google Scholar 

  98. M. Schecter, A. Kamenev, D.M. Gangardt, A. Lamacraft, Critical velocity of a mobile impurity in one-dimensional quantum liquids. Phys. Rev. Lett. 108, 207001 (2012)

    Article  ADS  Google Scholar 

  99. O. Lychkovskiy, Perpetual motion of a mobile impurity in a one-dimensional quantum gas. Phys. Rev. A 89, 033619 (2014)

    Article  ADS  Google Scholar 

  100. O. Lychkovskiy, Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid. Phys. Rev. A 91, 040101(R) (2015)

    Article  ADS  Google Scholar 

  101. C. Schenke, A. Minguzzi, F.W.J. Hekking, Probing superfluidity of a mesoscopic Tonks-Girardeau gas. Phys. Rev. A 85, 053627 (2012)

    Article  ADS  Google Scholar 

  102. O. Gamayun, O. Lychkovskiy, E. Burovski, M. Malcomson, V.V. Cheianov, M.B. Zvonarev, Impact of the injection protocol on an impurity’s stationary state. Phys. Rev. Lett. 120, 220605 (2018)

    Article  ADS  Google Scholar 

  103. E. Orignac, R. Citro, S. De Palo, M.-L. Chiofalo, Light scattering in inhomogeneous Tomonaga-Luttinger liquids. Phys. Rev. A 85, 013634 (2012)

    Article  ADS  Google Scholar 

  104. C. Castelnovo, J.-S. Caux, S.H. Simon, Driven impurity in an ultracold one-dimensional Bose gas with intermediate interaction strength. Phys. Rev. A 93, 013613 (2016)

    Article  ADS  Google Scholar 

  105. N.J. Robinson, J.-S. Caux, R.M. Konik, Motion of a distinguishable impurity in the Bose gas: arrested expansion without a lattice and impurity snaking. Phys. Rev. Lett. 116, 145302 (2016)

    Article  ADS  Google Scholar 

  106. O. Gamayun, Quantum Boltzmann equation for a mobile impurity in a degenerate Tonks-Girardeau gas. Phys. Rev. A 89, 063627 (2014)

    Article  ADS  Google Scholar 

  107. O. Gamayun, O. Lychkovskiy, V. Cheianov, Kinetic theory for a mobile impurity in a degenerate Tonks-Girardeau gas. Phys. Rev. E 90, 032132 (2014)

    Article  ADS  Google Scholar 

  108. A.C. Berceanu, E. Cancellieri, F.M. Marchetti, Drag in a resonantly driven polariton fluid. J. Phys. Condens. Matter 24, 235802 (2012)

    ADS  Google Scholar 

  109. A.B. Migdal, Superfluidity and the moments of inertia of nuclei. JETP 10(1), 176 (1960)

    MathSciNet  MATH  Google Scholar 

  110. D. Page, M. Prakash, J.M. Lattimer, A.W. Steiner, Rapid cooling of the neutron star in cassiopeia a triggered by neutron superfluidity in dense matter. Phys. Rev. Lett. 106, 081101 (2011)

    Article  ADS  Google Scholar 

  111. G.E. Volovik, Superfluid analogies of cosmological phenomena. Phys. Rep. 351, 195–348 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Lang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lang, G. (2018). Dynamical Structure Factor of the Lieb–Liniger Model and Drag Force Due to a Potential Barrier. In: Correlations in Low-Dimensional Quantum Gases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-05285-0_4

Download citation

Publish with us

Policies and ethics