Skip to main content

Flatness-Based Control of DC Machine-Serial Multicellular Power Converter Association

  • Conference paper
  • First Online:
Recent Advances in Electrical and Information Technologies for Sustainable Development

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 337 Accesses

Abstract

This chapter considers the control of serial multicellular power converter feeding DC motor. For this purpose, a new control strategy based on flatness approach is developed. The main aim consists on regulating the DC motor velocity to a desired level, keeping in mind the necessity of ensuring an equitable distribution of the supply voltage on the power switches of serial multicellular power converter. To this end, the regulation of the voltage at the terminals of the flying capacitors is necessary. The synthetized controller was verified by computer simulation using Matlab/SimPowerSystems, and the obtained results prove the effectiveness of the designed controller and show that the entire objectives are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aouadi, C., Abouloifa, A., Aourir, M., Boussairi, Y., Hamdoun, A., & Lachkar, I. (2017). State-feedback nonlinear control of three-phase grid connected to the photovoltaic system. In 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–6). IEEE.

    Google Scholar 

  • Aouadi, C., Abouloifa, A., Hamdoun, A., & Boussairi, Y. (2014). Backstepping based control of PV system connected to the grid. International Journal of Computer & Information Technology, 3.

    Google Scholar 

  • Benmansour, K., Benalia, A., Djemaï, M., & de Leon, J. (2007). Hybrid control of a multicellular converter. Nonlinear Analysis: Hybrid Systems, 1, 16–29. https://doi.org/10.1016/j.nahs.2006.06.001.

    Article  MathSciNet  MATH  Google Scholar 

  • Benmiloud, M., & Benalia, A. (2013). Hybrid control scheme for multicellular converter. In 2013 International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 476–482). IEEE.

    Google Scholar 

  • Benmiloud, M., Benalia, A., Defoort, M., & Djemai, M. (2016). On the limit cycle stabilization of a DC/DC three-cell converter. Control Engineering Practice, 49, 29–41. https://doi.org/10.1016/j.conengprac.2016.01.010.

    Article  Google Scholar 

  • Bethoux, O., & Barbot, J.-P. (2006). Commande permettant le contrôle du convertisseur multicellulaire série à nombre non premier de cellules. In Conférence Internationale Francophone En Automatique.

    Google Scholar 

  • Cormerais, H., Buisson, J., Richard, P. Y., & Morvan, C. (2008). Modelling and passivity based control of switched systems from bond graph formalism: Application to multicellular converters. Journal of the Franklin Institute, 345, 468–488. https://doi.org/10.1016/j.jfranklin.2008.01.001.

    Article  MathSciNet  MATH  Google Scholar 

  • Djemaï, M., Busawon, K., Benmansour, K., & Marouf, A. (2011). High-order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter. International Journal of Systems Science, 42, 1869–1882. https://doi.org/10.1080/00207721.2010.545492.

    Article  MathSciNet  MATH  Google Scholar 

  • Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of non-linear systems: Introductory theory and examples. International Journal of Control, 61, 1327–1361.

    Article  MathSciNet  Google Scholar 

  • Gateau, G., Fadel, M., Maussion, P., Bensaid, R., & Meynard, T. A. (2002). Multicell converters: Active control and observation of flying-capacitor voltages. IEEE Transactions on Industrial Electronics, 49, 998–1008. https://doi.org/10.1109/TIE.2002.803200.

    Article  Google Scholar 

  • Li, C. (n.d.). A modified neutral-point balancing space vector modulation for three-level neutral point clamped converters in high speed drives. IEEE Transactions on Industrial Electronics, 13.

    Google Scholar 

  • Meynard, T. A., Foch, H., Thomas, P., Courault, J., Jakob, R., & Nahrstaedt, M. (2002). Multicell converters: Basic concepts and industry applications. IEEE Transactions on Industrial Electronics, 49, 955–964. https://doi.org/10.1109/TIE.2002.803174.

    Article  Google Scholar 

  • Patin, N. (2015). Introduction to multi-level converters. In Power electronics applied to industrial systems and transports (Vol. 2, pp. 193–213). Elsevier. https://doi.org/10.1016/B978-1-78548-001-0.50005-8.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aourir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aourir, M., Abouloifa, A., Aouadi, C., Lachkar, I., El Otmani, F. (2019). Flatness-Based Control of DC Machine-Serial Multicellular Power Converter Association. In: El Hani, S., Essaaidi, M. (eds) Recent Advances in Electrical and Information Technologies for Sustainable Development. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-05276-8_3

Download citation

Publish with us

Policies and ethics