Skip to main content

Failure, Cracks, Fracture, Fatigue, Delamination, Adhesion, and Cohesion

  • Chapter
  • First Online:
Self-Healing Nanotextured Vascular Engineering Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 105))

  • 469 Accesses

Abstract

This Section is devoted to the description of several key ideas related to material failure, including several failure criteria (Sect. 6.1) and some necessary elements of the fracture mechanics , such as cracks , the Griffith theory , surface energy , and stress intensity factors for fracture in Modes I, II and III (Sect. 6.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An S, Kang DJ, Yarin AL (2018) Blister-like soft nano-textured thermo-pneumatic actuator as an artificial muscle. Nanoscale 10: 16591–16600

    Google Scholar 

  • Astarita G, Marrucci G (1974) Principles of non-Newtonian fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  • Barenblatt GI (2014) Flow, deformation and fracture. Cambridge University Press, Cambridge

    Google Scholar 

  • Cherepanov GP (1979) Mechanics of brittle fracture. McGraw Hill, New York

    Google Scholar 

  • Cherepanov GP, Esparragoza IE (1995) The problem of fiber pullout. Mater Sci Eng A 203:332–342

    Article  Google Scholar 

  • Cho SH, Andersson HM, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000

    Article  CAS  Google Scholar 

  • Chou TW (1992) Microstructural design of fiber composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • da C Andrade EN, Randall RFY, Makin MJ (1950) The Rehbinder effect. Proc Phys Soc B 63:990–995

    Article  Google Scholar 

  • Entov VM, Salganik RL (1968) Cracks in viscoelastic bodies. Mech Solids 3:81–86

    Google Scholar 

  • Gdoutos EE, Pilakoutas K, Rodopoulos CA (2000) Failure analysis of industrial composite materials. McGraw-Hill, New York

    Google Scholar 

  • Green AE (1956) Hypo-elasticity and plasticity. Proc R Soc London A 234:46–59

    Article  Google Scholar 

  • Green AE, Zerna W (1954) Theoretical elasticity. Clarendon Press, Oxford

    Google Scholar 

  • Griffith AA (1920) The phenomena of rupture and flow in solids. Phil Trans Roy Soc London A 221:163–198

    Article  Google Scholar 

  • Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361–364

    Google Scholar 

  • Joffe AF (1928) The physics of crystals. McGraw Hill, New York

    Google Scholar 

  • Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor and Francis, Philadelphia

    Google Scholar 

  • Kachanov LM (2004) Fundamentals of the theory of plasticity. Dover Publ, New York

    Google Scholar 

  • Landau LD, Lifshitz EM (1986) Theory of elasticity. Reed Educational and Professional Publishing Ltd, Oxford

    Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015) Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding, and adhesive and cohesive properties. ACS Appl Mater Interfaces 7:19555–19561

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, Yoon SS, Yarin AL (2016) Fatigue of self-healing nanofiber-based composites: Static test and subcritical crack propagation. ACS Appl Mater Interfaces 8:18462–18470

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, An S, Yoon SS, Yarin AL (2017) Self-healing nano-textured vascular-like materials: Mode I crack propagation. ACS Appl Mater Interfaces 9:27223–27231

    Article  CAS  Google Scholar 

  • Lurie AI (2005) Theory of elasticity. Springer, Heidelberg

    Book  Google Scholar 

  • Malyshev BM, Salganik RL (1965) The strength of adhesive joints using the theory of cracks. Int J Fract Mech 1:114–128

    CAS  Google Scholar 

  • Mukherjee S, Paulino GH (2003) The elastic–viscoelastic correspondence principle for functionally graded materials, revisited. ASME J Appl Mech 68:359–363

    Article  Google Scholar 

  • Na H, Chen P, Wan K-T, Wong S-C, Li Q, Ma Z (2012) Measurement of adhesion work of electrospun polymer membrane by shaft-loaded blister test. Langmuir 28:6677–6683

    Article  CAS  Google Scholar 

  • Orowan EO (1952) Fundamentals of brittle behaviour in metals. Fatigue and fracture of metals. John Wiley & Sons, New York, pp 139–167

    Google Scholar 

  • Paris PC (1964) The fracture mechanics approach to fatigue. In: Proceedings of 10th Sagamore Army Materials Research Conference 1963. Syracose University Press, Raquette Lake, pp 107–127

    Google Scholar 

  • Paris PC, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng Trans ASME D 85:528–534

    Article  CAS  Google Scholar 

  • Paulino GH, Jin Z-H (2001) Correspondence principle in viscoelastic functionally graded materials. ASME J Appl Mech 68:129–132

    Article  Google Scholar 

  • Pipes RB, Daniel IM (1971) Moire analysis of interlaminar shear edge effect in laminated composites. J Compos Mater 5:255–259

    Article  CAS  Google Scholar 

  • Pipes RB, Pagano NJ (1970) Interlaminar stress in composite laminates under uniform axial extension. J Compos Mater 4:538–548

    Article  Google Scholar 

  • Rabotnov YN (1969) Creep problems in structural members. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Rizzo FJ, Shippy DJ (1971) An application of the correspondence principle of linear viscoelasticity theory. J Appl Math 21:321–330

    Google Scholar 

  • Suresh S (1998) Fatigue of materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tadmor Z, Gogos CG (2006) Principles of polymer science, 2nd edn. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Tarpani JR, Milan MT, Spinelli D, Bose WW (2006) Mechanical performance of carbon-epoxy laminates. Part I: Quasi-static and impact bending properties. Mater Res 9:115–120

    Article  Google Scholar 

  • Tenney D, Pipes RB (2001) Advanced composites development for aerospace applications. In: The 7th Japan International SAMPE Symposium and Exhibition, Tokyo, Japan, 13 Nov 2001

    Google Scholar 

  • Tsai SW (2005) Three decades of composites activities at US Air Force Materials Laboratory. Compos Sci Technol 65:2295–2299

    Article  Google Scholar 

  • Wan K-T, Mai Y-W (1995) Fracture mechanics of a shaft-loaded blister of thin flexible membrane on rigid substrate. Int J Fract 74:181–197

    Article  Google Scholar 

  • Wu X-F, Rahman A, Zhou Z, Pelot DD, Sinha-Ray S, Chen B, Payne S, Yarin AL (2013) Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J Appl Polym Sci 129:1383–1393

    Article  CAS  Google Scholar 

  • Wu X-F, Yarin AL (2013) Recent progress in interfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: An overview. J Appl Polym Sci 129:2225–2237

    Article  Google Scholar 

  • Yarin AL, Rubin MB, Roisman IV (1995) Penetration of a rigid projectile into an elastic-plastic target of finite thickness. Int J Impact Eng 16:801–831

    Article  Google Scholar 

  • Yarin AL, Roisman IV, Tropea C (2017) Collision phenomena in liquids and solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zhang W, Staszel C, Yarin AL, Shim E, Pourdeyhimi B (2018) Point-bonded polymer nonwovens and their rupture in stretching. Polymer 146:209–221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Yarin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yarin, A.L., Lee, M.W., An, S., Yoon, S.S. (2019). Failure, Cracks, Fracture, Fatigue, Delamination, Adhesion, and Cohesion. In: Self-Healing Nanotextured Vascular Engineering Materials. Advanced Structured Materials, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-030-05267-6_6

Download citation

Publish with us

Policies and ethics