Skip to main content

Macroscopic Observations of Physicochemical Aspects of Self-Healing Phenomena

  • Chapter
  • First Online:
  • 437 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 105))

Abstract

The spreading of droplets of liquid healing agents on both horizontal and tilted intact surfaces is considered and compared with that on porous nanofiber (NF) mats in Sects. 3.1 and 3.2, respectively. The intact surfaces and NF mats serve as macroscopic models of self-healing engineering materials with vascular networks, where the healing agents have been released from the NFs in a damaged domain. The spreading of droplets on NF mats show significant deviations from that on the intact surfaces because of the imbibition of liquid into the inter-fiber pores. The model macroscopic experiments with a single crack tip in Sect. 3.3 elucidate the self-healing mechanism , namely, that the epoxy resin and hardener released into the tip react with each other, yielding a cured and hardened epoxy that heals the crack tip. Then, in Sect. 3.4, a microfluidic chip -like setup comprising a vascular system of microchannels alternatingly filled with either a resin monomer or a curing agent is used to study the additional intrinsic aspects of the physical healing mechanism in self-healing engineering materials . The model demonstrates that, as a pre-notched crack propagates across the chip , the resin and curing agent are released from the damaged channels, wet the surrounding matrix , spread over the banks of the crack , mix, and finally polymerize. Moreover, the polymerized domains form a system of pillars, which stitch the crack banks on opposite sides, thus preventing further propagation of the crack .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • An S, Kim YI, Lee MW, Yarin AL, Yoon SS (2017a) Wetting and coalescence of drops of self-healing agents on electrospun nanofiber mats. Langmuir 33:10663–10672

    Article  CAS  Google Scholar 

  • An S, Kim YI, Yoon JY, Yarin AL, Yoon SS (2017b) Wetting of inclined nano-textured surfaces by self-healing agents. Appl Phys Lett 111:234101

    Article  Google Scholar 

  • An S, Liou M, Song KY, Jo HS, Lee MW, Al-Deyab SS, Yarin AL, Yoon SS (2015) Highly flexible transparent self-healing composite based on electrospun core–shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation. Nanoscale 7:17778–17785

    Article  CAS  Google Scholar 

  • Arashiro EY, Demarquette NR (1999) Use of the pendant drop method to measure interfacial tension between molten polymers. Mater Res 2:23–32

    Article  CAS  Google Scholar 

  • Behzadnasab M, Mirabedini S, Esfandeh M, Farnood R (2017) Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Prog Org Coat 105:212–224

    Article  CAS  Google Scholar 

  • Bekas D, Tsirka K, Baltzis D, Paipetis A (2016) Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos B 87:92–119

    Article  CAS  Google Scholar 

  • Berg J (ed) (1993) Wettability. Taylor & Francis, New York

    Google Scholar 

  • Binder WH (ed) (2013) Self-healing polymers: from principles to applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Blaiszik B, Kramer S, Olugebefola S, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  • Diesendruck CE, Sottos NR, Moore JS, White SR (2015) Biomimetic self-healing. Angew Chem Int Ed 54:10428–10447

    Article  CAS  Google Scholar 

  • Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35:263–269

    Article  Google Scholar 

  • Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430

    Article  CAS  Google Scholar 

  • Hansen F, Rødsrud G (1991) Surface tension by pendant drop: I. A fast standard instrument using computer image analysis. J Colloid Interface Sci 141:1–9

    Article  CAS  Google Scholar 

  • Herbst F, Döhler D, Michael P, Binder WH (2013) Self-healing polymers via supramolecular forces. Macromol Rapid Commun 34:203–220

    Article  CAS  Google Scholar 

  • Hillewaere XK, Du Prez FE (2015) Fifteen chemistries for autonomous external self-healing polymers and composites. Prog Polym Sci 49:121–153

    Article  Google Scholar 

  • Huppert HE (1982) Flow and instability of a viscous gravity current down a slope. Nature 300:427–429

    Article  Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015a) Self-healing nanofiber-reinforced polymer composites: 1. Tensile testing and recovery of mechanical properties. ACS Appl Mater Interfaces 7:19546–19554

    Article  CAS  Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015b) Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding, and adhesive and cohesive properties. ACS Appl Mater Interfaces 7:19555–19561

    Article  CAS  Google Scholar 

  • Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014a) Self-healing transparent core–shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2:7045–7053

    Article  CAS  Google Scholar 

  • Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014b) Hybrid self-healing matrix using core − shell nanofibers and capsuleless microdroplets. ACS Appl Mater Interfaces 6:10461–10468

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, Yoon SS, Yarin AL (2016a) Fatigue of self-healing nanofiber-based composites: static test and subcritical crack propagation. ACS Appl Mater Interfaces 8:18462–18470

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, Yoon SS, Yarin AL (2016b) Self-healing of nanofiber-based composites in the course of stretching. Polymer 103:180–188

    Article  CAS  Google Scholar 

  • Lee MW, Yoon SS, Yarin AL (2016c) Solution-blown core−shell self-healing nano- and microfibers. ACS Appl Mater Interfaces 8:4955–4962

    Article  CAS  Google Scholar 

  • Lee MW, Yoon SS, Yarin AL (2017) Release of self-healing agents in a material: What happens next? ACS Appl Mater Interfaces 9:17449–17455

    Article  CAS  Google Scholar 

  • Lembach A, Tan HB, Roisman IV, Gambaryan-Roisman T, Zhang Y, Tropea C, Yarin AL (2010) Drop impact, spreading, splashing and penetration in electrospun nanofiber mats. Langmuir 26:9516–9523

    Article  CAS  Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Lucas R (1918) Ueber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten. Kolloid Z. 23:15–22

    Article  CAS  Google Scholar 

  • Luikov AV (1964) Heat and mass transfer in capillary-porous bodies. Adv Heat Transfer 1:123–184

    Article  CAS  Google Scholar 

  • Luikov AV (1966) Heat and mass transfer in capillary-porous bodies. Pergamon Press, Oxford

    Book  Google Scholar 

  • McCabe WL, Smith JC, Harriot P (1993) Unit operations of chemical engineering. McGraw-Hill, New York

    Google Scholar 

  • Pelot DD, Sahu RP, Sinha-Ray S, Yarin AL (2013) Strong squeeze flows of yield-stress fluids: The effect of normal deviatoric stresses. J Rheol 57:719–742

    Article  CAS  Google Scholar 

  • Reznik SN, Yarin AL (2002) Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall. Phys Fluids 14:118–132

    Article  CAS  Google Scholar 

  • Ringrose P, Bentley M (2015) Upscaling flow properties. Reservoir model design. Springer, Heidelberg, pp 115–149

    Google Scholar 

  • Sahu R, Sinha-Ray S, Yarin AL, Pourdeyhimi B (2012) Drop impacts on electrospun nanofiber membranes. Soft Matter 8:3957–3970

    Article  CAS  Google Scholar 

  • Samadzadeh M, Boura SH, Peikari M, Kasiriha S, Ashrafi A (2010) A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat 68:159–164

    Article  CAS  Google Scholar 

  • Silva ACM, Moghadam AD, Singh P, Rohatgi PK (2017) Self-healing composite coatings based on in situ micro–nanoencapsulation process for corrosion protection. J Coat Technol Res 14:1–29

    Article  Google Scholar 

  • Stachewicz U, Dijksman JF, Burdinski D, Yurteri CU, Marijnissen JC (2009) Relaxation times in single event electrospraying controlled by nozzle front surface modification. Langmuir 25:2540–2549

    Article  CAS  Google Scholar 

  • Stankiewicz A, Szczygieł I, Szczygieł B (2013) Self-healing coatings in anti-corrosion applications. J Mater Sci 48:8041–8051

    Article  CAS  Google Scholar 

  • Stauffer CE (1965) The measurement of surface tension by the pendant drop technique. J Phys Chem 69:1933–1938

    Article  CAS  Google Scholar 

  • Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: A review. Polymer 69:369–383

    Article  CAS  Google Scholar 

  • Tikhonov AN, Samarskii AA (1990) Equations of mathematical physics. Dover Publications, New York

    Google Scholar 

  • Trask R, Williams H, Bond I (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspiration Biomimetics 2:1–9

    Article  Google Scholar 

  • Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273–283

    Article  Google Scholar 

  • Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X, Yan X, Zhu J, Wang Q, Shao L (2015) Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J Mater Chem A 3:469–480

    Article  CAS  Google Scholar 

  • Wei Z, Yang JH, Zhou J, Xu F, Zrínyi M, Dussault PH, Osada Y, Chen YM (2014) Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 43:8114–8131

    Article  CAS  Google Scholar 

  • Withers PJ (2011) 3D crack-tip microscopy: Illuminating micro-scale effects on crack-tip behavior. Adv Energy Mater 13:1096–1100

    Article  CAS  Google Scholar 

  • Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522

    Article  CAS  Google Scholar 

  • Yang Y, Ding X, Urban MW (2015) Chemical and physical aspects of self-healing materials. Prog Polym Sci 49:34–59

    Article  Google Scholar 

  • Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446–7467

    Article  CAS  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu Rev Fluid Mech 38:159–192

    Article  Google Scholar 

  • Yarin AL, Pourdeyhimi B, Ramakrishna S (2014) Fundamentals and applications of micro- and nanofibers. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Yarin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yarin, A.L., Lee, M.W., An, S., Yoon, S.S. (2019). Macroscopic Observations of Physicochemical Aspects of Self-Healing Phenomena. In: Self-Healing Nanotextured Vascular Engineering Materials. Advanced Structured Materials, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-030-05267-6_3

Download citation

Publish with us

Policies and ethics