Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 105))

Abstract

In this introductory chapter, the fundamental concepts related to self-healing in nature are introduced and the applications of this phenomenon in engineering materials are outlined. Although natural self-healing is predominantly based on vascular systems, self-healing engineering materials initially used another path.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aissa B, Haddad EI, Jamroz W (2014) Self-healing materials: innovative materials for terrestrial & space applications. Smithers Rapra Technologies, Shawbury, Shrewsbury

    Google Scholar 

  • An S, Liou M, Song KY, Jo HS, Lee MW, Al-Deyab SS, Yarin AL, Yoon SS (2015) Highly flexible transparent self-healing composite based on electrospun core–shell nanofibers produced by coaxial electrospinning for anti-corrosion and electrical insulation. Nanoscale 7:17778–17785

    Article  CAS  Google Scholar 

  • Bazilevsky AV, Sun K, Yarin AL, Megaridis CM (2007) Selective intercalation of polymers in carbon nanotubes. Langmuir 23:7451–7455

    Article  CAS  Google Scholar 

  • Bazilevsky AV, Sun K, Yarin AL, Megaridis CM (2008) Room-temperature, open-air, wet intercalation of liquids, surfactants, polymers and nanoparticles within nanotubes and microchannels. J Mater Chem 18:696–702

    Article  CAS  Google Scholar 

  • Behzadnasab M, Mirabedini S, Esfandeh M, Farnood R (2017) Evaluation of corrosion performance of a self-healing epoxy-based coating containing linseed oil-filled microcapsules via electrochemical impedance spectroscopy. Prog Org Coat 105:212–224

    Article  CAS  Google Scholar 

  • Binder WH (ed) (2013) Self-healing polymers: from principles to applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Blaiszik B, Kramer S, Olugebefola S, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  • Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT (2001) A smart repair system for polymer matrix composites. Compos A 32:1767–1776

    Article  Google Scholar 

  • Boura SH, Peikari M, Ashrafi A, Samadzadeh M (2012) Self-healing ability and adhesion strength of capsule embedded coatings—Micro and nano sized capsules containing linseed oil. Prog Org Coat 75:292–300

    Article  CAS  Google Scholar 

  • Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719–730

    Article  CAS  Google Scholar 

  • Champagne J, Pang SS, Li G (2016) Effect of confinement level and local heating on healing efficiency of self-healing particulate composites. Compos B 97:344–352

    Article  CAS  Google Scholar 

  • Chestney N (2018) Cracks in Scottish nuclear reactor core prompt safety checks. Reuters

    Google Scholar 

  • Cho SH, White SR, Braun PV (2009) Self-healing polymer coatings. Adv Mater 21:645–649

    Article  CAS  Google Scholar 

  • CNN (2010) NASA finds more cracks on Discovery’s fuel tank

    Google Scholar 

  • Diesendruck CE, Sottos NR, Moore JS, White SR (2015) Biomimetic self-healing. Angew Chem Int Ed 54:10428–10447

    Article  CAS  Google Scholar 

  • Doan TQ, Leslie LS, Kim SY, Bhargava R, White SR, Sottos NR (2016) Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings. Polymer 107:263–272

    Article  CAS  Google Scholar 

  • Dror Y, Salalha W, Avrahami R, Zussman E, Yarin AL, Dersch R, Greiner A, Wendorff JH (2007) One-step production of polymeric micro-tubes via co-electrospinning. Small 3:1064–1073

    Article  CAS  Google Scholar 

  • Dry C (1992) Passive tunable fibers and matrices. Int J Mod Phys B 6:2763–2771

    Article  CAS  Google Scholar 

  • Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35:263–269

    Article  Google Scholar 

  • Fifo O, Ryan K, Basu B (2014) Glass fibre polyester composite with in vivo vascular channel for use in self-healing. Smart Mater Struct 23:095017

    Article  CAS  Google Scholar 

  • Gao L, He J, Hu J, Wang C (2015) Photoresponsive self-healing polymer composite with photoabsorbing hybrid microcapsules. ACS Appl Mater Interfaces 7:25546–25552

    Article  CAS  Google Scholar 

  • García SJ, Fischer HR, White PA, Mardel J, González-García Y, Mol AJMC, Hughes AE (2011) Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept. Prog Org Coat 70:142–149

    Article  CAS  Google Scholar 

  • Ghosh SK (ed) (2009) Self-healing materials: fundamentals, design strategies, and applications. Wiley-VCH, Weinheim

    Google Scholar 

  • Goldsmith S (2009) Southwest Airlines Flight 2294 lands in West Virginia with football-sized hole in fuselage. Daily News; Southwest Airlines Information Regarding Flight 2284. http://www.blogsouthwest.com/news/southwest-airlines-information-regarding-flight-2294/Aviation Safety Network http://aviation-safety.net/database/record.php?id=20110401-0

  • Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22:5424–5430

    Article  CAS  Google Scholar 

  • Hager MD, van der Zwaag S, Schubert US (eds) (2016) Self-healing materials. Springer, Heidelberg

    Google Scholar 

  • Hamilton AR, Sottos NR, White SR (2011) Pressurized vascular systems for self-healing materials. J R Soc Interface 2011:1–9

    Google Scholar 

  • Hamilton AR, Sottos NR, White SR (2012) Mitigation of fatigue damage in self-healing vascular materials. Polymer 53:5575–5581

    Article  CAS  Google Scholar 

  • Hansen CJ, Wu W, Toohey KS, Sottos NR, White SR, Lewis JA (2009) Self-healing materials with interpenetrating microvascular networks. Adv Mater 21:4143–4147

    Article  CAS  Google Scholar 

  • He Z, Jiang S, Li Q, Wang J, Zhao Y, Kang M (2017) Facile and cost-effective synthesis of isocyanate microcapsules via polyvinyl alcohol-mediated interfacial polymerization and their application in self-healing materials. Compos Sci Technol 138:15–23

    Article  CAS  Google Scholar 

  • Hillewaere XK, Du Prez FE (2015) Fifteen chemistries for autonomous external self-healing polymers and composites. Prog Polym Sci 49:121–153

    Article  CAS  Google Scholar 

  • Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States. NACE International. https://www.nace.org/uploadedFiles/Publications/ccsupp.pdf. Accessed 11 June 2018

  • Kousourakis A, Mouritz A (2010) The effect of self-healing hollow fibres on the mechanical properties of polymer composites. Smart Mater Struct 19:085021

    Article  CAS  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 42:856–873

    Article  CAS  Google Scholar 

  • Lang S, Zhou Q (2017) Synthesis and characterization of poly (urea-formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog Org Coat 105:99–110

    Article  CAS  Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015a) Self-healing nanofiber-reinforced polymer composites: 1. Tensile testing and recovery of mechanical properties. ACS Appl Mater Interfaces 7:19546–19554

    Article  CAS  Google Scholar 

  • Lee MW, An S, Jo HS, Yoon SS, Yarin AL (2015b) Self-healing nanofiber-reinforced polymer composites: 2. Delamination/debonding, and adhesive and cohesive properties. ACS Appl Mater Interfaces 7:19555–19561

    Article  CAS  Google Scholar 

  • Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014a) Self-healing transparent core–shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2:7045–7053

    Article  CAS  Google Scholar 

  • Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014b) Hybrid self-healing matrix using core–shell nanofibers and capsuleless microdroplets. ACS Appl Mater Interfaces 6:10461–10468

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, Yoon SS, Yarin AL (2016a) Fatigue of self-healing nanofiber-based composites: static test and subcritical crack propagation. ACS Appl Mater Interfaces 8:18462–18470

    Article  CAS  Google Scholar 

  • Lee MW, Sett S, Yoon SS, Yarin AL (2016b) Self-healing of nanofiber-based composites in the course of stretching. Polymer 103:180–188

    Article  CAS  Google Scholar 

  • Lee MW, Yoon SS, Yarin AL (2016c) Solution-blown core–shell self-healing nano- and microfibers. ACS Appl Mater Interfaces 8:4955–4962

    Article  CAS  Google Scholar 

  • Lee MW, Yoon SS, Yarin AL (2017) Self-healing nano-textured vascular-like materials: Mode I crack propagation. ACS Appl Mater Interfaces 9:27223–27231

    Article  CAS  Google Scholar 

  • Li G (2015) Self-healing composites: shape memory polymer based structures. Wiley, New York

    Google Scholar 

  • Li G, John M (2008) A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol 68:3337–3343

    Article  CAS  Google Scholar 

  • Li G, Nettles D (2010) Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer 51:755–762

    Article  CAS  Google Scholar 

  • Li G, Uppu N (2010) Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization. Compos Sci Technol 70:1419–1427

    Article  CAS  Google Scholar 

  • Motuku M, Vaidya U, Janowski GM (1999) Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater Struct 8:623–638

    Article  CAS  Google Scholar 

  • Norris CJ, Bond IP, Trask RS (2013) Healing of low-velocity impact damage in vascularised composites. Compos A 44:78–85

    Article  CAS  Google Scholar 

  • Norris CJ, Meadway GJ, O’Sullivan MJ, Bond IP, Trask RS (2011) Self-healing fibre reinforced composites via a bioinspired vasculature. Adv Funct Mater 21:3624–3633

    Article  CAS  Google Scholar 

  • Norris CJ, White JAP, McCombe G, Chatterjee P, Bond IP, Trask RS (2012) Autonomous stimulus triggered self-healing in smart structural composites. Smart Mater Struct 21:094027

    Article  Google Scholar 

  • Nosonovsky M, Rohatgi PK (2012) Biomimetics in materials science: self-healing, self-lubricating, and self-cleaning materials. Springer, Heidelberg

    Book  Google Scholar 

  • Pang JWC, Bond IP (2005a) ‘Bleeding composites’—damage detection and self-repair using a biomimetic approach. Compos A 36:183–188

    Article  Google Scholar 

  • Pang JWC, Bond IP (2005b) A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Technol 65:1791–1799

    Article  CAS  Google Scholar 

  • Park JH, Braun PV (2010) Coaxial electrospinning of self-healing coatings. Adv Mater 22:496–499

    Article  CAS  Google Scholar 

  • Patrick JF, Hart KR, Krull BP, Diesendruck CE, Moore JS, White SR, Sottos NR (2014) Continuous self-healing life cycle in vascularized structural composites. Adv Mater 26:4302–4308

    Article  CAS  Google Scholar 

  • Patrick JF, Sottos NR, White SR (2012) Microvascular based self-healing polymeric foam. Polymer 53:4231–4240

    Article  CAS  Google Scholar 

  • Samadzadeh M, Boura SH, Peikari M, Kasiriha S, Ashrafi A (2010) A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat 68:159–164

    Article  CAS  Google Scholar 

  • Silva ACM, Moghadam AD, Singh P, Rohatgi PK (2017) Self-healing composite coatings based on in situ micro–nanoencapsulation process for corrosion protection. J Coat Technol Res 14:1–29

    Article  CAS  Google Scholar 

  • Sinha-Ray S, Lee MW, Sinha-Ray S, An S, Pourdeyhimi B, Yoon SS, Yarin AL (2013) Supersonic nanoblowing: a new ultra-stiff phase of nylon 6 in 20–50 nm confinement. J Mater Chem C 1:3491–3498

    Article  CAS  Google Scholar 

  • Sinha-Ray S, Pelot DD, Zhou ZP, Rahman A, Wu X-F, Yarin AL (2012) Encapsulation of self-healing materials by coelectrospinning, emulsion electrospinning, solution blowing and intercalation. J Mater Chem 22:9138–9146

    Article  CAS  Google Scholar 

  • Sinha-Ray S, Sahu RP, Yarin AL (2011) Nanoencapsulated smart tunable phase change materials. Soft Matter 7:8823–8827

    Article  CAS  Google Scholar 

  • Stratmann M, Leng A, Fürbeth W, Streckel H, Gehmecker H, Groβe-Brinkhaus KH (1996) The scanning Kelvin probe; a new technique for the in situ analysis of the delamination of organic coatings. Prog Org Coat 27:261–267

    Article  CAS  Google Scholar 

  • Sun D, An J, Wu G, Yang J (2015) Double-layered reactive microcapsules with excellent thermal and non-polar solvent resistance for self-healing coatings. J Mater Chem A 3:4435–4444

    Article  CAS  Google Scholar 

  • Suryanarayana CV, Rao KC, Kumar D (2008) Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Prog Org Coat 63:72–78

    Article  CAS  Google Scholar 

  • Thakur VK, Kessler MR (2015) Self-healing polymer nanocomposite materials: a review. Polym 69:369–383

    Article  CAS  Google Scholar 

  • The Washington Observer (1965) 17 killed as gas line explodes

    Google Scholar 

  • Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585

    Article  CAS  Google Scholar 

  • Toohey KS, Sottos NR, White SR (2009) Characterization of microvascular-based self-healing coatings. Exp Mech 49:707–717

    Article  CAS  Google Scholar 

  • Trask RS, Bond IP (2006) Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater Struct 15:704–710

    Article  CAS  Google Scholar 

  • Ullah H, Azizli KAM, Man ZB, Ismail MBC, Khan MI (2016) The potential of microencapsulated self-healing materials for microcracks recovery in self-healing composite systems: a review. Polym Rev 56:429–485

    Google Scholar 

  • Vahedi V, Pasbakhsh P, Piao CS, Seng CE (2015) A facile method for preparation of self-healing epoxy composites: using electrospun nanofibers as microchannels. J Mater Chem A 3:16005–16012

    Article  CAS  Google Scholar 

  • van der Zwaag S (ed) (2007) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Heidelberg

    Google Scholar 

  • Wang Y, Pham DT, Ji C (2015) Self-healing composites: a review. Cogent Eng 2:1075686

    Article  Google Scholar 

  • Wei H, Wang Y, Guo J, Shen NZ, Jiang D, Zhang X, Yan J, Zhu J, Wang Q, Shao L (2015) Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. J Mater Chem A 3:469–480

    Article  CAS  Google Scholar 

  • Wei Z, Yang JH, Zhou J, Xu F, Zrínyi M, Dussault PH, Osada Y, Chen YM (2014) Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 43:8114–8131

    Article  CAS  Google Scholar 

  • White SR, Moore JS, Sottos NR, Krull BP, Santa Cruz WA, Gergely RCE (2014) Restoration of large damage volumes in polymers. Science 344:620–623

    Article  CAS  Google Scholar 

  • White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  • Williams HR, Trask RS, Bond IP (2007) Self-healing composite sandwich structures. Smart Mater Struct 16:1198–1207

    Article  Google Scholar 

  • Williams HR, Trask RS, Weaver PM, Bond IP (2008a) Minimum mass vascular networks in multifunctional materials. J R Soc Interface 5:55–65

    Article  CAS  Google Scholar 

  • Williams HR, Trask RS, Bond IP (2008b) Self-healing sandwich panels: restoration of compressive strength after impact. Compos Sci Technol 68:3171–3177

    Article  CAS  Google Scholar 

  • Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522

    Article  CAS  Google Scholar 

  • Wu G, An J, Sun D, Tang X, Xiang Y, Yang J (2014) Robust microcapsules with polyurea/silica hybrid shell for one-part self-healing anticorrosion coatings. J Mater Chem A 2:11614–11620

    Article  CAS  Google Scholar 

  • Wu X-F, Rahman A, Zhou Z, Pelot DD, Sinha-Ray S, Chen B, Payne S, Yarin AL (2013) Electrospinning core-shell nanofibers for interfacial toughening and self-healing of carbon-fiber/epoxy composites. J Appl Polym Sci 129:1383–1393

    Article  CAS  Google Scholar 

  • Wu X-F, Yarin AL (2013) Recent progress in interfacial toughening and damage self-healing of polymer composites based on electrospun and solution-blown nanofibers: an overview. J Appl Polym Sci 129:2225–2237

    Article  CAS  Google Scholar 

  • Yang Y, Ding X, Urban MW (2015) Chemical and physical aspects of self-healing materials. Prog Polym Sci 49:34–59

    Article  CAS  Google Scholar 

  • Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42:7446–7467

    Article  CAS  Google Scholar 

  • Yerro O, Radojevic V, Radovic I, Petrovic M, Uskokovic PS, Stojanovic DB, Aleksic R (2016) Thermoplastic acrylic resin with self-healing properties. Polym Eng Sci 56:251–257

    Article  CAS  Google Scholar 

  • Zhang P, Li G (2015) Healing-on-demand composites based on polymer artificial muscle. Polymer 64:29–38

    Article  CAS  Google Scholar 

  • Zhang P, Li G (2016) Advances in healing-on-demand polymers and polymer composites. Prog Polym Sci 57:32–63

    Article  CAS  Google Scholar 

  • Zhang P, Ogunmekan B, Ibekwe S, Jerro D, Pang SS, Li G (2016) Healing of shape memory polyurethane fiber-reinforced syntactic foam subjected to tensile stress. J Intell Mater Syst Struct 27:1792–1801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Yarin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yarin, A.L., Lee, M.W., An, S., Yoon, S.S. (2019). Introduction. In: Self-Healing Nanotextured Vascular Engineering Materials. Advanced Structured Materials, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-030-05267-6_1

Download citation

Publish with us

Policies and ethics