Skip to main content

Communications with Learning Errors

  • Chapter
  • First Online:
Naming Game

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 34))

  • 746 Accesses

Abstract

In the real-life scenario of human communications, both the local communication process of agents and the information propagation on the underlying network affect the achievement and speed of global convergence. For example, if agents can learn fast and correctly from local communications, and thereafter teach their neighbors to effectively learn the same, then the entire population would be able to reach global convergence efficiently; or, if the acquaintanceship of agents is simple, meaning that the underlying network is simple, then the transmitted information would be propagated efficiently over the entire network. Here, a simple underlying network is one with good connectivity (large average degree), but with less local-clustered structures (low clustering coefficient). However, realistically, language acquisition is always error-prone. This problem in human language leads to ambiguities with learning errors in human conversations, thereby degrading the effectiveness of human communications. Interestingly, it was suggested in [1] that learning errors can actually increase diversity of the linguistic system by introducing additional information. Thus, learning errors are able to help prevent the linguistic system from being trapped in sub-optimum states, beneficial for the evolution of a more efficient language. Here, the linguistic system is evaluated by a function of payoff. It was also found in [1] some thresholds of the learning error rate for certain models, where if the error rate is below the threshold then the system gains advantage from learning errors; otherwise, if the error rate is above the threshold then the errors or mistakes will impair the system, e.g., reducing significantly the payoff of the linguistic system. Moreover, noise may lead to recurrently converging states of a Markov chain model, which is considered beneficial for better detecting social interactions [2]. Therefore, errors or noise may affect the language system positively, to some extent, as in the two cases mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Nowak, J.B. Plotkin, D.C. Krakauer, The evolutionary language game. J. Theor. Biol. 200(2), 147–162 (1999). https://doi.org/10.1006/jtbi.1999.0981

    Article  Google Scholar 

  2. C.C. Lim, W.T. Zhang, Noisy naming games, partial synchronization and coarse-graining in social networks, in Network Science Workshop (NSW), 2011 IEEE (IEEE, 2011), pp. 25–29. https://doi.org/10.1109/NSW.2011.6004654

  3. R.R. Liu, C.X. Jia, H.X. Yang, B.H. Wang, Naming game on small-world networks with geographical effects. Physica A 388, 3615–3620 (2009). https://doi.org/10.1016/j.physa.2009.05.007

    Article  Google Scholar 

  4. L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, Agreement dynamics on small-world networks. EPL (Europhys. Lett.) 73(6), 969 (2006). https://doi.org/10.1209/epl/i2005-10481-7

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Baronchelli, A gentle introduction to the minimal naming game. Belgian J. Linguist. 30(1), 171–192 (2016)

    Article  Google Scholar 

  6. Y. Lou, G.R. Chen, Supplementary information for paper “analysis of the “naming game” with learning errors in communications” (2015), http://www.ee.cityu.edu.hk/~gchen/pdf/NGLE-SI.pdf

  7. Q. Lu, G. Korniss, B.K. Szymanski, The naming game in social networks: community formation and consensus engineering. J. Econ. Interac. Coord. 4(2), 221–235 (2009). https://doi.org/10.1007/s11403-009-0057-7

    Article  Google Scholar 

  8. Y. Lou, G.R. Chen, Analysis of the “naming game” with learning errors in communications. Sci. Rep. 5, 12191 (2015). https://doi.org/10.1038/srep12191

    Article  Google Scholar 

  9. H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is stochastically larger than the other. Annals Math. Stat. pp. 50–60 (1947)

    Article  MathSciNet  Google Scholar 

  10. M.P. Fay, M.A. Proschan, Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat. Surveys 4, 1–39 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanrong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, G., Lou, Y. (2019). Communications with Learning Errors. In: Naming Game. Emergence, Complexity and Computation, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-05243-0_5

Download citation

Publish with us

Policies and ethics