Skip to main content

Finite-Memory Naming Game

  • Chapter
  • First Online:
  • 754 Accesses

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 34))

Abstract

One crucial assumption on the minimal naming game model is that all agents have infinite capacity of memory, or practically sufficiently large volume of memory, for storing all words that they learned. However, in reality this may not always be the case. Information overflow due to lack of sufficient memory is common in real-world systems such as various communication networks. In this chapter, the finite-memory naming game (FMNG) model [1] is introduced. Agents in FMNG have finite volumes of memory, and the memory size of each agent is determined beforehand. FMNG takes the bounded rationality of agents into account and mimics the situation that there are only finite capability and resource for information storage in the game system. The process of FMNG works under the same framework as the minimal naming game, except that each agent has a limited memory capacity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. W.X. Wang, B.Y. Lin, C.L. Tang, G.R. Chen, Agreement dynamics of finite-memory language games on networks. Eur. Phys. J. B 60(4), 529–536 (2007). https://doi.org/10.1140/epjb/e2008-00013-5

    Article  MATH  Google Scholar 

  2. G. Fu, Y. Cai, W. Zhang, Analysis of naming game over networks in the presence of memory loss. Physica A 479, 350–361 (2017)

    Article  MathSciNet  Google Scholar 

  3. L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, Nonequilibrium dynamics of language games on complex networks. Phys. Rev. E 74(3), 036105 (2006). https://doi.org/10.1103/PhysRevE.74.036105

    Article  Google Scholar 

  4. R.R. Liu, C.X. Jia, H.X. Yang, B.H. Wang, Naming game on small-world networks with geographical effects. Physica A 388, 3615–3620 (2009). https://doi.org/10.1016/j.physa.2009.05.007

    Article  Google Scholar 

  5. D. Boyer, O. Miramontes, Interface motion and pinning in small-world networks. Phys. Rev. E 67(3), 035102 (2003). https://doi.org/10.1103/PhysRevE.67.035102

    Article  Google Scholar 

  6. C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi, Comparison of voter and glauber ordering dynamics on networks. Phys. Rev. E 71(6), 066107 (2005). https://doi.org/10.1103/PhysRevE.71.066107

    Article  Google Scholar 

  7. C. Castellano, D. Vilone, A. Vespignani, Incomplete ordering of the voter model on small-world networks. EPL (Europhys. Lett.) 63(1), 153–158 (2003)

    Article  Google Scholar 

  8. I. Dornic, H. Chaté, J. Chave, H. Hinrichsen, Critical coarsening without surface tension: the universality class of the voter model. Phys. Rev. Lett. 87(4), 045701 (2001). https://doi.org/10.1103/PhysRevLett.87.045701

    Article  Google Scholar 

  9. X. Niu, C. Doyle, G. Korniss, B.K. Szymanski, The impact of variable commitment in the naming game on consensus formation. Sci. Rep. 7, 41750 (2017)

    Article  Google Scholar 

  10. K. Suchecki, V.M. Eguíluz, M. San Miguel, Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Phys. Rev. E 72(3), 036132 (2005). https://doi.org/10.1103/PhysRevE.72.036132

    Article  Google Scholar 

  11. D. Vilone, C. Castellano, Solution of voter model dynamics on annealed small-world networks. Phys. Rev. E 69(1), 016109 (2004). https://doi.org/10.1103/PhysRevE.69.016109

    Article  Google Scholar 

  12. P. Erdös, A. Rényi, On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  13. P. Erdös, A. Rényi, On the strength of connectedness of a random graph. Acta Mathematica Academiae Scientiarum Hungarica 12(1–2), 261–267 (1964)

    Article  MathSciNet  Google Scholar 

  14. D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998). https://doi.org/10.1038/30918

    Article  MATH  Google Scholar 

  15. D.J. Watts, The “new” science of networks. Annu. Rev. Sociol 30, 243–270 (2004). https://doi.org/10.1146/annurev.soc.30.020404.104342

    Article  Google Scholar 

  16. R. Albert, A.L. Barabási, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002). https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  17. A.L. Barabási, R. Albert, H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web. Physica A 281(1), 69–77 (2000). https://doi.org/10.1016/S0378-4371(00)00018-2

    Article  Google Scholar 

  18. A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  19. J. Gao, B. Li, G. Schoenebeck, F.Y. Yu, Engineering agreement: the naming game with asymmetric and heterogeneous agents, in AAAI, pp. 537–543 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanrong Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, G., Lou, Y. (2019). Finite-Memory Naming Game. In: Naming Game. Emergence, Complexity and Computation, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-05243-0_3

Download citation

Publish with us

Policies and ethics