Skip to main content

Manufacturing of Clinical Grade Cellular Products Under GMP Conditions

  • Chapter
  • First Online:
Cell-Based Therapy for Degenerative Retinal Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 446 Accesses

Abstract

Cellular therapies for retinal diseases have been increasing in numbers and have demonstrated safety and initial efficacy in clinical trials, recently. It is anticipated that some of these therapies will be moved into late stage clinical trials, with potential marketing approval in the near future. In order to safely manufacture such products, first for clinical trials, and then later for potential marketing, larger scale Good Manufacturing Practice (GMP) processes must be developed. In this chapter, we will describe the principles behind GMP manufacturing, the standards set by the United States Food and Drug Administration (FDA), and facilities, materials, and personnel required for such manufacturing. We will also be discussing potential methods for scale-up and how to possibly produce large doses for the treatment of large numbers of patients in the future, after these therapies have been approved as marketed products. Conventional small-scale tissue culture flask based manufacturing methods are compared to manufacturing methods in multilayer cell factories and to a closed system hollow fiber bioreactor, possibly providing an advancement in producing the required numbers of cells. Only with the application of reproducible and reliable large-scale cellular manufacturing methods for allogeneic products will there be enough cell doses available to treat the anticipated number of patients in need of such therapies, and provide them with a clinical benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klassen H, Lund RD. Retinal transplants can drive a pupillary reflex in host rat brains. Proc Natl Acad Sci U S A. 1987;84(19):6958–60.

    Article  CAS  Google Scholar 

  2. Klassen H, Lund RD. Retinal graft-mediated pupillary responses in rats: restoration of a reflex function in the mature mammalian brain. J Neurosci. 1990;10(2):578–87.

    Article  CAS  Google Scholar 

  3. Klassen H, Lund RD. Parameters of retinal graft-mediated responses are related to underlying target innervation. Brain Res. 1990;533(2):181–91.

    Article  CAS  Google Scholar 

  4. Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M, Wapner F, Goluboff E. Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci. 1989;30(3):586–8.

    CAS  PubMed  Google Scholar 

  5. Sheedlo HJ, Li LX, Turner JE. Functional and structural characteristics of photoreceptor cells rescued in RPE-cell grafted retinas of RCS dystrophic rats. Exp Eye Res. 1989;48(6):841–54.

    Article  CAS  Google Scholar 

  6. Silverman MS, Hughes SE. Photoreceptor rescue in the RCS rat without pigment epithelium transplantation. Curr Eye Res. 1990;9(2):183–91.

    Article  CAS  Google Scholar 

  7. Young MJ, Ray J, Whiteley SJ, Klassen H, Gage FH. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci. 2000;16(3):197–205.

    Article  CAS  Google Scholar 

  8. Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, Young MJ. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci. 2004;45(11):4167–73.

    Article  Google Scholar 

  9. Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4(1):73–9.

    Article  CAS  Google Scholar 

  10. West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M, Ali RR. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells. 2012;30(7):1424–35.

    Article  CAS  Google Scholar 

  11. Ortin-Martinez A, Tsai EL, Nickerson PE, Bergeret M, Lu Y, Smiley S, Comanita L, Wallace VA. A Re-interpretation of cell transplantation: GFP transfer from donor to host photoreceptors. Stem Cells. 2016;35(4):932–9.

    Article  Google Scholar 

  12. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M. Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med. 2002;8(9):1004–10.

    Article  CAS  Google Scholar 

  13. Lu B, Wang S, Girman S, McGill T, Ragaglia V, Lund R. Human adult bone marrow-derived somatic cells rescue vision in a rodent model of retinal degeneration. Exp Eye Res. 2010;91(3):449–55.

    Article  CAS  Google Scholar 

  14. Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2014;56(1):81–9. https://doi.org/10.1167/iovs.14-15415.

    Article  CAS  PubMed  Google Scholar 

  15. Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, Suemori H, Nakatsuji N, Ide C, Honda Y, Takahashi M. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest Ophthalmol Vis Sci. 2004;45(3):1020–5.

    Article  Google Scholar 

  16. Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells. 2004;6(3):217–45.

    Article  CAS  Google Scholar 

  17. Vugler A, Carr AJ, Lawrence J, Chen LL, Burrell K, Wright A, Lundh P, Semo M, Ahmado A, Gias C, da Cruz L, Moore H, Andrews P, Walsh J, Coffey P. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol. 2008;214(2):347–61.

    Article  CAS  Google Scholar 

  18. Johnson LA, June CH. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2017;27(1):38–58.

    Article  CAS  Google Scholar 

  19. Kuo CY, Kohn DB. Gene therapy for the treatment of primary immune deficiencies. Curr Allergy Asthma Rep. 2016;16(5):39.

    Article  Google Scholar 

  20. Current good manufacturing practice in manufacturing, processing, packing, or holding of drugs; general. 21CFR210.2013.

    Google Scholar 

  21. Current good manufacturing practice for finished pharmaceuticals. 21CFR211.2013.

    Google Scholar 

  22. Biological products: general. 21CFR600.2013.

    Google Scholar 

  23. General biological products standards. 21CFR610.2013.

    Google Scholar 

  24. USP 36-NF 31. United States Pharmacopeia Convention, Rockville, MD. 01 Aug 2013.

    Google Scholar 

  25. Personnel qualifications. 21CFR211.25.2013.

    Google Scholar 

  26. Consultants. 21CFR211.34.2013.

    Google Scholar 

  27. Responsibilities of quality control unit. 21CFR211.22.2013.

    Google Scholar 

  28. Records. 21CFR600.12.2013.

    Google Scholar 

  29. Written procedures; deviations. 21CFR211.100.2013.

    Google Scholar 

  30. Sterility. 21CFR610.12.2013.

    Google Scholar 

  31. Purity. 21CFR610.13.2013.

    Google Scholar 

  32. Mycoplasma. 21CFR610.30.2013.

    Google Scholar 

  33. Receipt and storage of untested components, drug product containers, and closures. 21CFR211.82.2013.

    Google Scholar 

  34. Control of components and drug product containers and closures. 21CFR211 Subpart E.

    Google Scholar 

  35. Use of approved components, drug product containers, and closures. 21CFR211.86.2013.

    Google Scholar 

  36. Testing and approval or rejection of components, drug product containers, and closures. 21CFR211.84.2013.

    Google Scholar 

  37. Component, drug product container, closure, and labeling records. 21CFR211.184.2013.

    Google Scholar 

  38. Automatic, mechanical, and electronic equipment. 21CFR211.68.2013.

    Google Scholar 

  39. Guideline on general principles of process validation. Food and Drug Administration, CDRH/CDER. May 1987.

    Google Scholar 

  40. USP, Chapter <797>: Pharmaceutical compounding – sterile preparations. Pharmacopeial Forum. 2013;36(3).

    Google Scholar 

  41. USP, Chapter <1116>: Microbiological control and monitoring of aseptic processing environments. Pharmacopeial Forum. 2013;36(6).

    Google Scholar 

  42. Design and construction features. 21CFR211.42.2013.

    Google Scholar 

  43. Cheney WA, Spurgin WP. Electrostatically enhanced HEPA filter. U.S. Patent No. 4,781,736. 1 Nov. 1988.

    Google Scholar 

  44. Ventilation, air filtration, air heating and cooling. 21CFR211.46.2013.

    Google Scholar 

  45. Electronic records; electronic signatures. 21CFR11.2013.

    Google Scholar 

  46. Sanitation. 21CFR211.56.2013.

    Google Scholar 

  47. Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2016;16(1):7–14.

    Article  CAS  Google Scholar 

  48. Kehoe D, Schnitzler A, Simler J, DiLeo A, Ball A. Scale-up of human mesenchymal stem cells on microcarriers in suspension in a single-use bioreactor. BioPharm Int. 2012;25(3):28–38.

    CAS  Google Scholar 

  49. Hanley PJ, Mei Z, Durett AG, Cabreira-Hansen Mda G, Klis M, Li W, Zhao Y, Yang B, Parsha K, Mir O, Vahidy F, Bloom D, Rice RB, Hematti P, Savitz SI, Gee AP. Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the quantum cell expansion system. Cytotherapy. 2014;16(8):1048–58.

    Article  CAS  Google Scholar 

  50. Rojewski MT, Fekete N, Baila S, Nguyen K, Fürst D, Antwiler D, Dausend J, Kreja L, Ignatius A, Sensebé L, Schrezenmeier H. GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant. 2013;22(11):1981–2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fury, B., Klassen, H., Bauer, G. (2019). Manufacturing of Clinical Grade Cellular Products Under GMP Conditions. In: Zarbin, M., Singh, M., Casaroli-Marano, R. (eds) Cell-Based Therapy for Degenerative Retinal Disease . Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05222-5_5

Download citation

Publish with us

Policies and ethics