Skip to main content

Degenerative Retinal Diseases: Cell Sources for Cell-Based Therapy

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

In the aggregate, retinal degenerative diseases such as age-related macular degeneration, retinitis pigmentosa, and Stargardt disease are major causes of vision loss and blindness worldwide. Damage to retinal pigment epithelial cells and photoreceptors eventually leads to their death, and, in contrast to some species such as zebrafish, humans lack an endogenous system for robust spontaneous replacement or repair. Cell-based therapies provide a rational option to restore function, particularly when there is substantial loss of neuronal tissue. A number of important issues remain unresolved, however, including the differentiation and integration of cells after implantation. For stem cell therapies, the retina provides an excellent environment, not only because of its ease of access for surgical procedures but also because of the ability to observe transplanted cells directly through clear ocular media using innovative imaging approaches. The improvements in the clinical use of progenitor cells in the last decade have resulted in significant advances for the treatment of degenerative retinal disease. In this chapter, a brief discussion is given of the main sources of stem cells used for photoreceptor and/or retinal pigment epithelium recovery/replacement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zarbin MA. Cell-based therapy for degenerative retinal disease. Trends Mol Med. 2016;22:115–34.

    Article  PubMed  Google Scholar 

  2. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16.

    Article  PubMed  Google Scholar 

  3. Furtado JM, Lansingh VC, Carter MJ, Milanese MF, Peña BN, Ghersi HA, et al. Causes of blindness and visual impairment in Latin America. Surv Ophthalmol. 2012;57:149–77.

    Article  PubMed  Google Scholar 

  4. Zarbin MA, Casaroli-Marano RP, Rosenfeld PJ. Age-related macular degeneration: clinical findings, histopathology and imaging techniques. Dev Ophthalmol. 2014;53:1–32.

    Article  PubMed  Google Scholar 

  5. Chopdar A, Chakravarthy U, Verma D. Age related macular degeneration. Br Med J. 2003;326:485–8.

    Article  Google Scholar 

  6. Stuart A, Ford JA, Duckworth S, Jones C, Pereira A. Anti-VEGF therapies in the treatment of choroidal neovascularisation secondary to non-age-related macular degeneration: a systematic review. BMJ Open. 2015;5:e007746.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gemenetzi M, Lotery AJ, Patel PJ. Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents. Eye. 2017;31:1–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kolomeyer AM, Zarbin MA. Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol. 2014;59:134–65.

    Article  PubMed  Google Scholar 

  9. Curcio CA, Medeiros NE, Millican CL. Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1996;37:1236–49.

    CAS  PubMed  Google Scholar 

  10. Dalkara D, Goureau O, Marazova K, Sahel J-A. Let there be light: gene and cell therapy for blindness. Hum Gene Ther. 2016;27:134–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scholl H, Strauss R, Singh M, Dalkara D, et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med. 2016;8:368rv6.

    Article  PubMed  CAS  Google Scholar 

  12. Sengillo JD, Justus S, Tsai Y-T, Cabral T, Tsang SH. Gene and cell-based therapies for inherited retinal disorders: an update. Am J Med Genet C Semin Med Genet. 2016;172:349–66.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Canto-Soler V, Flores-Bellver M, Vergara MN. Stem cell sources and their potential for the treatment of retinal degenerations. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFd1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res. 2015;14:243–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Raff M. Adult stem cell plasticity: fact or artifact? Annu Rev Cell Dev Biol. 2003;19:1–22.

    Article  CAS  PubMed  Google Scholar 

  16. Sachdeva M, Eliott D. Stem cell-based therapy for diseases of the retinal pigment epithelium: from bench to bedside. Semin Ophthalmol. 2016;31:25–9.

    Article  PubMed  Google Scholar 

  17. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  18. Odorico JS, Kaufman DS, Thomson J, et al. Multilineage differentiation from human embryonic stem cell lines. Stem Cells. 2001;19:193–204.

    Article  CAS  PubMed  Google Scholar 

  19. Stephenson E, Jacquet L, Miere C, Wood V, Kadeva N, Cornwell G, et al. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc. 2012;7:1366–81.

    Article  CAS  PubMed  Google Scholar 

  20. Crocco MC, Fratnz N, Bos-Mikich A. Substrates and supplements for hESCs: a critical review. J Assist Reprod Genet. 2013;30:315–23.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ramsden CM, Powner MB, Carr A-JF, Smart MJK, da Cruz L, Coffey PJ. Stem cells in retinal regeneration: past, present and future. Development. 2013;140:2576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A. 2006;103:12769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol. 2008;26:215–24.

    Article  CAS  PubMed  Google Scholar 

  24. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells. 2006;8:189–99.

    Article  CAS  PubMed  Google Scholar 

  25. Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell. 2009;5:396–408.

    Article  CAS  PubMed  Google Scholar 

  26. Maruotti J, Wahlin K, Gorrell D, Bhutto I, Lutty G, Zack DJ. A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med. 2013;2:341–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plaza Reyes A, Petrus-Reurer S, Antonsson L, Stenfelt S, Bartuma H, Panula S, et al. Xeno-free and defined human embryonic stem cell-derived retinal pigment epithelial cells functionally integrate in a large-eyed preclinical model. Stem Cell Reports. 2016;6:9–17.

    Article  CAS  PubMed  Google Scholar 

  28. Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res. 2015;46:31–66.

    Article  PubMed  Google Scholar 

  29. Forest DL, Johnson LV, Clegg DO. Cellular models and therapies for age-related macular degeneration. Dis Model Mech. 2015;8:421–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pyle AD, Lock LF, Donovan PJ. Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol. 2006;24:344–50.

    Article  CAS  PubMed  Google Scholar 

  31. Sugino IK, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, Rapista A, et al. Comparison of FRPE and human embryonic stem cell-derived RPE behavior on aged human Bruch’s membrane. Invest Ophthalmol Vis Sci. 2011;52:4979–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10:771–85.

    Article  CAS  PubMed  Google Scholar 

  33. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.

    Article  CAS  PubMed  Google Scholar 

  34. Völkner M, Zschätzsch M, Rostovskaya M, Overall RW, Busskamp V, Anastassiadis K, et al. Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Reports. 2016;6:525–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2015;2598:1–8.

    Google Scholar 

  36. Hanus J, Zhao F, Wang S. Current therapeutic developments in atrophic age-related macular degeneration. Br J Ophthalmol. 2016;100:122–7.

    Article  PubMed  Google Scholar 

  37. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.

    Article  PubMed  Google Scholar 

  38. Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci. 2013;54:5087–96.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hsiung J, Zhu D, Hinton DR. Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med. 2015;4:10–20.

    Article  CAS  PubMed  Google Scholar 

  40. Hendrickson A, Bumsted-O’Brien K, Natoli R, Ramamurthy V, Possin D, Provis J. Rod photoreceptor differentiation in fetal and infant human retina. Exp Eye Res. 2008;87:415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444:203–7.

    Article  CAS  PubMed  Google Scholar 

  42. Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485:99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, et al. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci U S A. 2013;110:1101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat Commun. 2016;7:13028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, et al. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun. 2016;7:13537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pearson RA, Gonzalez-Cordero A, West EL, Claudio Ribeiro JR, Aghaizu N, Goh D, et al. Donor and host photoreceptors engage in material transfer following transplantation of postmitotic photoreceptor precursors. Nat Commun. 2016;7:1–15.

    Google Scholar 

  47. Seiler MJ, Aramant RB. Cell replacement and visual restoration by retinal sheet transplants. Prog Retin Eye Res. 2012;31:661–87.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, et al. Retinal stem cells in the adult mammalian eye. Science. 2000;287:2032–6.

    Article  CAS  PubMed  Google Scholar 

  49. Coles BL, Angenieux B, Inoue T, Del Rio-Tsonis K, Spence JR, McInnes RR, et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci U S A. 2004;101:15772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giannelli SG, Demontis GC, Pertile G, Rama P, Broccoli V. Adult human Muller glia cells are a highly efficient source of rod photoreceptors. Stem Cells. 2011;29:344–56.

    Article  CAS  PubMed  Google Scholar 

  51. Martínez-Navarrete GC, Angulo A, Martín-Nieto J, Cuenca N. Gradual morphogenesis of retinal neurons in the peripheral retinal margin of adult monkeys and humans. J Comp Neurol. 2008;511:557–80.

    Article  PubMed  Google Scholar 

  52. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolás M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104–16.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jeon S, Oh IH. Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases. BMB Rep. 2015;48:193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: a view from the eye. Cell Stem Cell. 2008;2:538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsonis PA, Del Rio-Tsonis K. Lens and retina regeneration: transdifferentiation, stem cells and clinical applications. Exp Eye Res. 2004;78:161–72.

    Article  CAS  PubMed  Google Scholar 

  56. Saini JS, Temple S, Stern JH. Human retinal pigment epithelium stem cell (RPESC). Adv Exp Med Biol. 2016;854:557–62.

    Article  CAS  PubMed  Google Scholar 

  57. Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10:88–95.

    Article  CAS  PubMed  Google Scholar 

  58. Ballios BG, Clarke L, Coles BLK, Shoichet MS, Van Der Kooy D. The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors. Biol Open. 2012;1:237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gualdoni S, Baron M, Lakowski J, Decembrini S, Smith AJ, Pearson RA, et al. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells. 2010;28:1048–59.

    Article  CAS  PubMed  Google Scholar 

  60. Frøen R, Johnsen EO, Nicolaissen B, Facskó A, Petrovski G, Moe MC. Does the adult human ciliary body epithelium contain “true” retinal stem cells? Biomed Res Int. 2013;2013:531579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hitchcock P, Ochocinska M, Sieh A, Otteson D. Persistent and injury-induced neurogenesis in the vertebrate retina. Prog Retin Eye Res. 2004;23:183–94.

    Article  PubMed  Google Scholar 

  62. Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014;43:17–75.

    Article  CAS  PubMed  Google Scholar 

  63. Chohan A, Singh U, Kumar A, Kaur J. Müller stem cell dependent retinal regeneration. Clin Chim Acta. 2017;464:160–4.

    Article  CAS  PubMed  Google Scholar 

  64. Lawrence JM, Singhal S, Bhatia B, Keegan DJ, Reh TA, Luthert PJ, et al. MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics. Stem Cells. 2007;25:2033–43.

    Article  CAS  PubMed  Google Scholar 

  65. Goldman D. Muller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014;15:431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT. In vitro characterization of a spontaneously immortalized human Muller cell line (MIO-M1). Invest Ophthalmol Vis Sci. 2002;43:864–9.

    PubMed  Google Scholar 

  67. Ng TK, Fortino VR, Pelaez D, Cheung HS. Progress of mesenchymal stem cell therapy for neural and retinal diseases. World J Stem Cells. 2014;6:111–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Huang Y, Enzmann V, Ildstad ST. Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev. 2011;7:434–45.

    Article  PubMed Central  Google Scholar 

  69. Labrador-Velandia S, Alonso-Alonso ML, Alvarez-Sanchez S, González-Zamora J, Carretero-Barrio I, Pastor JC, et al. Mesenchymal stem cell therapy in retinal and optic nerve diseases: an update of clinical trials. World J Stem Cells. 2016;8:376.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Joe AW, Gregory-Evans K. Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res. 2010;35:941–52.

    Article  PubMed  Google Scholar 

  71. Griesche N, Luttmann W, Luttmann A, Stammermann T, Geiger H, Baer PC. A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells. Cells Tissues Organs. 2010;192:106–15.

    Article  PubMed  Google Scholar 

  72. Mosna F, Sensebé L, Krampera M. Human bone marrow and adipose tissue mesenchymal stem cells: a user’s guide. Stem Cells Dev. 2010;19:1449–70.

    Article  CAS  PubMed  Google Scholar 

  73. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  74. Frese L, Dijkman P, Hoerstrup S. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43:268–74.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One. 2014;9:e109305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, et al. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy. 2013;15:434–48.

    Article  CAS  PubMed  Google Scholar 

  77. Mendel TA, Clabough EBD, Kao DS, Demidova-Rice TN, Durham JT, Zotter BC, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One. 2013;8:e65691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rajashekhar G. Mesenchymal stem cells: new players in retinopathy therapy. Front Endocrinol. 2014;5:59.

    Article  Google Scholar 

  79. Park SS, Moisseiev E, Bauer G, Anderson JD, Grant MB, Zam A, et al. Advances in bone marrow stem cell therapy for retinal dysfunction. Prog Retin Eye Res. 2017;56:148–65.

    Article  CAS  PubMed  Google Scholar 

  80. Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappaB signaling. Stem Cells. 2016;34:601–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Becker A, Van RI. Homing and migration of mesenchymal stromal cells: how to improve the efficacy of cell therapy? World J Stem Cells. 2016;8:73–87.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cornelissen AS, Maijenburg MW, Nolte MA, Voermans C. Organ-specific migration of mesenchymal stromal cells: who, when, where and why? Immunol Lett. 2015;168:159–69.

    Article  CAS  PubMed  Google Scholar 

  83. Tamaki Y, Nakahara T, Ishikawa H, Sato S. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow. Odontology. 2013;101:121–32.

    Article  CAS  PubMed  Google Scholar 

  84. Duan P, Xu H, Zeng Y, Wang Y, Yin ZQ. Human bone marrow stromal cells can differentiate to a retinal pigment epithelial phenotype when co-cultured with pig retinal pigment epithelium using a transwell system. Cell Physiol Biochem. 2013;31:601–13.

    Article  CAS  PubMed  Google Scholar 

  85. Cerman E, Akkoc T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal electrophysiological effects of intravitreal bone marrow derived mesenchymal stem cells in streptozotocin induced diabetic rats. PLoS One. 2016;e0156495:11.

    Google Scholar 

  86. Tzameret A, Sher I, Belkin M, Treves A, Meir A, Nagler A, et al. Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy. Exp Eye Res. 2014;118:135–44.

    Article  CAS  PubMed  Google Scholar 

  87. Dreixler JC, Poston JN, Balyasnikova I, Shaikh AR, Tupper KY, Conway S, et al. Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophthalmol Vis Sci. 2014;55:3785–96.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mackie AR, Losordo DW. CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Tex Heart Inst J. 2011;38:474–85.

    PubMed  PubMed Central  Google Scholar 

  89. Wang X, Zhang J, Zhang F, Li J, Li Y, Tan Z, et al. The clinical status of stem cell therapy for ischemic cardiomyopathy. Stem Cells Int. 2015;2015:135023.

    PubMed  PubMed Central  Google Scholar 

  90. Hazra S, Jarajapu YPR, Stepps V, Caballero S, Thinschmidt JS, Sautina L, et al. Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model. Diabetologia. 2013;56:644–53.

    Article  CAS  PubMed  Google Scholar 

  91. Chakravarthy H, Beli E, Navitskaya S, O’Reilly S, Wang Q, Kady N, et al. Imbalances in mobilization and activation of pro-inflammatory and vascular reparative bone marrow-derived cells in diabetic retinopathy. PLoS One. 2016;11(1):e0146829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Vasam G, Joshi S, Jarajapu YPR. Impaired mobilization of vascular reparative bone marrow cells in streptozotocin-induced diabetes but not in leptin receptor-deficient db/db mice. Sci Rep. 2016;6:1–13.

    Article  CAS  Google Scholar 

  93. Singh T, Prabhakar S, Gupta A, Anand A. Recruitment of stem cells into the injured retina after laser injury. Stem Cells Dev. 2012;21:448–54.

    Article  CAS  PubMed  Google Scholar 

  94. Rennert RC, Sorkin M, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenerative medicine. Regen Med. 2012;7:833–50.

    Article  CAS  PubMed  Google Scholar 

  95. Davey GC, Patil SB, O’Loughlin A, O’Brien T. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol. 2014;5:86.

    Article  Google Scholar 

  96. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest. 2004;114:765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tzameret A, Sher I, Belkin M, Treves AJ, Meir A, Nagler A, et al. Epiretinal transplantation of human bone marrow mesenchymal stem cells rescues retinal and vision function in a rat model of retinal degeneration. Stem Cell Res. 2015;15:387–94.

    Article  CAS  PubMed  Google Scholar 

  98. Moisseiev E, Smit-McBride Z, Oltjen S, Zhang P, Zawadzki R, Motta M, et al. Intravitreal administration of human bone marrow CD34+ stem cells in a murine model of retinal degeneration. Invest Ophthalmol Vis Sci. 2016;57:4125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Balaiya S, Grant MB, Priluck J, Chalam KV. Growth factors/chemokines in diabetic vitreous and aqueous alter the function of bone marrow-derived progenitor (CD34(+)) cells in humans. Am J Physiol Endocrinol Metab. 2014;307:E695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li Y, Reca RG, Atmaca-Sonmez P, Ratajczak MZ, Ildstad ST, Kaplan HJ, et al. Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci. 2006;47:1646–52.

    Article  PubMed  Google Scholar 

  101. Harris JR, Brown GAJ, Jorgensen M, Kaushal S, Ellis EA, Grant MB, et al. Bone marrow-derived cells home to and regenerate retinal pigment epithelium after injury. Invest Ophthalmol Vis Sci. 2006;47:2108–13.

    Article  PubMed  Google Scholar 

  102. Harris JR, Fisher R, Jorgensen M, Kaushal S, Scott EW. CD133 progenitor cells from the bone marrow contribute to retinal pigment epithelium repair. Stem Cells. 2009;27:457–66.

    Article  PubMed  Google Scholar 

  103. Yodoi Y, Sasahara M, Kameda T, Yoshimura N, Otani A. Circulating hematopoietic stem cells in patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2007;48:5464–72.

    Article  PubMed  Google Scholar 

  104. Machalinska A, Safranow K, Dziedziejko V, Mozolewska-Piotrowska K, Paczkowska E, Klos P, et al. Different populations of circulating endothelial cells in patients with age-related macular degeneration: a novel insight into pathogenesis. Invest Ophthalmol Vis Sci. 2011;52:93–100.

    Article  CAS  PubMed  Google Scholar 

  105. Mathivanan I, Trepp C, Brunold C, Baerlocher G, Enzmann V. Retinal differentiation of human bone marrow-derived stem cells by co-culture with retinal pigment epithelium in vitro. Exp Cell Res. 2015;333:11–20.

    Article  CAS  PubMed  Google Scholar 

  106. Wang H-S, Hung S-C, Peng S-T, Huang C-C, Wei H-M, Guo Y-J, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22:1330–7.

    Article  PubMed  Google Scholar 

  107. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  108. Datta I, Mishra S, Mohanty L, Pulikkot S, Joshi PG. Neuronal plasticity of human Wharton’s jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy. 2011;13:918–32.

    Article  CAS  PubMed  Google Scholar 

  109. Arutyunyan I, Elchaninov A, Makarov A, Fatkhudinov T. Umbilical cord as prospective source for mesenchymal stem cell-based therapy. Stem Cells Int. 2016;2016:6901286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Ding D-C, Chang Y-H, Shyu W-C, Lin S-Z. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24:339–47.

    Article  PubMed  Google Scholar 

  111. Amable PR, Teixeira MVT, Carias RBV, Granjeiro JM, Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res Ther. 2014;5:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kuchroo P, Dave V, Vijayan A, Viswanathan C, Ghosh D. Paracrine factors secreted by umbilical cord-derived mesenchymal stem cells induce angiogenesis in vitro by a VEGF-independent pathway. Stem Cells Dev. 2015;24:437–50.

    Article  CAS  PubMed  Google Scholar 

  113. Cao J, Murat C, An W, Yao X, Lee J, Santulli-Marotto S, et al. Human umbilical tissue-derived cells rescue retinal pigment epithelium dysfunction in retinal degeneration. Stem Cells. 2016;34:367–79.

    Article  CAS  PubMed  Google Scholar 

  114. Charbel Issa P, Bolz HJ, Ebermann I, Domeier E, Holz FG, Scholl HP. Characterisation of severe rod-cone dystrophy in a consanguineous family with a splice site mutation in the MERTK gene. Br J Ophthalmol. 2009;93:920–5.

    Article  CAS  PubMed  Google Scholar 

  115. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  116. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;107:861–72.

    Article  CAS  Google Scholar 

  117. Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    Article  CAS  PubMed  Google Scholar 

  118. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol. 2016;17:183–93.

    Article  CAS  PubMed  Google Scholar 

  119. Palomo ABA, Lucas M, Dilley RJ, McLenachan S, Chen FK, Requena J, et al. The power and the promise of cell reprogramming: personalized autologous body organ and cell transplantation. J Clin Med. 2014;3:373–87.

    Article  CAS  PubMed  Google Scholar 

  120. Singh VK, Kumar N, Kalsan M, Saini A, Chandra R. Mechanism of induction: induced pluripotent stem cells (iPSCs). J Stem Cells. 2015;10:43–62.

    CAS  PubMed  Google Scholar 

  121. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rodriguez-Piza I, Richaud-Patin Y, Vassena R, Gonzalez F, Barrero MJ, Veiga A, et al. Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells. 2010;28:36–44.

    CAS  PubMed  Google Scholar 

  123. Reichman S, Terray A, Slembrouck A, Nanteau C, Orieux G, Habeler W, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111:8518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Reichman S, Goureau O. Production of retinal cells from confluent human iPS cells. Methods Mol Biol. 2016;1357:339–51.

    Article  CAS  PubMed  Google Scholar 

  125. Leach LL, Croze RH, Hu Q, Nadar VP, Clevenger TN, Pennington BO, et al. Induced pluripotent stem cell-derived retinal pigmented epithelium: a comparative study between cell lines and differentiation methods. J Ocul Pharmacol Ther. 2016;32:jop.2016.0022

    Google Scholar 

  126. Al-Shamekh S, Goldberg JL. Retinal repair with induced pluripotent stem cells. Transl Res. 2014;163:377–86.

    Article  PubMed  Google Scholar 

  127. Hunt NC, Hallam D, Karimi A, Mellough CB, Chen J, Steel DHW, et al. 3D culture of human pluripotent stem cells in RGD-alginate hydrogel improves retinal tissue development. Acta Biomater. 2017;49:329–43.

    Article  CAS  PubMed  Google Scholar 

  128. Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao L-H, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.

    Article  CAS  PubMed  Google Scholar 

  129. Hiler D, Chen X, Hazen J, Kupriyanov S, Carroll PA, Qu C, et al. Quantification of retinogenesis in 3D cultures reveals epigenetic memory and higher efficiency in iPSCs derived from rod photoreceptors. Cell Stem Cell. 2015;17:101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou L, Wang W, Liu Y, Fernandez de Castro J, Ezashi T, Telugu BP, et al. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells. 2011;29:972–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Riera M, Fontrodona L, Albert S, Ramirez DM, Seriola A, Salas A, et al. Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev. 2016;3:16010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Sugita S, Iwasaki Y, Makabe K, Kamao H, Mandai M, Shiina T, et al. Successful transplantation of retinal pigment epithelial cells from MHC homozygote iPSCs in MHC-matched models. Stem Cell Reports. 2016;7:635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Barnea-Cramer AO, Wang W, Lu S-J, Singh MS, Luo C, Huo H, et al. Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice. Sci Rep. 2016;6:29784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Y, Tsai Y-T, Hsu C-W, Erol D, Yang J, Wu W-H, et al. Long-term safety and efficacy of human induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med. 2012;18:1312–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wiley LA, Burnight ER, Songstad AE, Drack AV, Mullins RF, Stone EM, et al. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res. 2015;44:15–35.

    Article  PubMed  Google Scholar 

  136. Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31:741–7.

    Article  CAS  PubMed  Google Scholar 

  137. Mandai M, Fujii M, Hashiguchi T, Sunagawa G, Ito S, Sun J, et al. iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Reports. 2017;8:69–83.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T cell response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Reports. 2016;7:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2014;2:205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Singh MS, MacLaren RE. Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci. 2011;278:3009–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Du H, Lim SL, Grob S, Zhang K. Induced pluripotent stem cell therapies for geographic atrophy of age-related macular degeneration. Semin Ophthalmol. 2011;26:216–24.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Xian B, Huang B. The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther. 2015;6:161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Stein-Streilein J. Mechanisms of immune privilege in the posterior eye. Int Rev Immunol. 2013;32:42–56.

    Article  CAS  PubMed  Google Scholar 

  144. Taylor AW. Ocular immune privilege and transplantation. Front Immunol. 2016;7:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Carpenter MK, Rao MS, Rao MS. Concise review: making and using clinically compliant pluripotent stem cell lines. Stem Cells Transl Med. 2015;4:381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Casaroli-Marano RP, Tabera J, Vilarrodona A, Trias E. Regulatory issues in cell-based therapy for clinical purposes. Dev Ophthalmol. 2014;53:189–200.

    Article  PubMed  Google Scholar 

  147. Sheu J, Klassen H, Bauer G. Cellular manufacturing for clinical applications. Dev Ophthalmol. 2014;53:178–88.

    Article  PubMed  Google Scholar 

  148. Awe JP, Lee PC, Ramathal C, Vega-Crespo A, Durruthy-Durruthy J, Cooper A, et al. Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Res Ther. 2013;4:87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Rony IK, Baten A, Bloomfield JA, Islam ME, Billah MM, Islam KD. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Prolif. 2015;48:140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Martí M, Mulero L, Pardo C, Morera C, Carrió M, Laricchia-Robbio L, et al. Characterization of pluripotent stem cells. Nat Protoc. 2013;8:223–53.

    Article  PubMed  CAS  Google Scholar 

  151. Warren L, Wang J. Feeder-free reprogramming of human fibroblasts with messenger RNA. Curr Protoc Stem Cell Biol. 2013;27:Unit 4A.6

    Google Scholar 

  152. Revilla A, Gonzalez C, Iriondo A, Fernandez B, Prieto C, Marin C, et al. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J Tissue Eng Regen Med. 2016;10:893–907.

    Article  CAS  PubMed  Google Scholar 

  153. Choudhary P, Booth H, Gutteridge A, Surmacz B, Louca I, Steer J, et al. Directing differentiation of pluripotent stem cells toward retinal pigment epithelium lineage. Stem Cells Transl Med. 2017;6:490–501.

    Article  CAS  PubMed  Google Scholar 

  154. Fairchild P, Horton C, Lahiri P, Shanmugarajah K, Davies T. Beneath the sword of Damocles: regenerative medicine and the shadow of immunogenicity. Regen Med. 2016;11:817–29.

    Article  CAS  PubMed  Google Scholar 

  155. Imberti B, Monti M, Casiraghi F. Pluripotent stem cells and tolerance induction in organ transplantation. Curr Opin Organ Transplant. 2015;20:86–93.

    Article  CAS  PubMed  Google Scholar 

  156. Zheng D, Wang X, Xu RH. Concise review: one stone for multiple birds: generating universally compatible human embryonic stem cells. Stem Cells. 2016;34:2269–75.

    Article  CAS  PubMed  Google Scholar 

  157. Kadereit S, Trounson A. In vitro immunogenicity of undifferentiated pluripotent stem cells (PSC) and derived lineages. Semin Immunopathol. 2011;33:551–62.

    Article  CAS  PubMed  Google Scholar 

  158. English K, Wood KJ. Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant. 2011;16:90–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support by grants from Fondos de Investigaciones Sanitarias del Instituto Carlos III (FIS10-PI040654 and FIS14-PI00196) and Fundació Marató TV3 (20120630-30-31). The research project was co-financed by the European Regional Development Fund (FEDER) of European Union.

Disclosure of Potential Conflicts of Interest: None. The authors report no financial or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo P. Casaroli-Marano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Casaroli-Marano, R.P., Nieto-Nicolau, N., Martínez-García de la Torre, R.A. (2019). Degenerative Retinal Diseases: Cell Sources for Cell-Based Therapy. In: Zarbin, M., Singh, M., Casaroli-Marano, R. (eds) Cell-Based Therapy for Degenerative Retinal Disease . Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-030-05222-5_4

Download citation

Publish with us

Policies and ethics