On the Atomic Decomposition of Coorbit Spaces with Non-integrable Kernel

  • Stephan DahlkeEmail author
  • Filippo De Mari
  • Ernesto De Vito
  • Lukas Sawatzki
  • Gabriele Steidl
  • Gerd Teschke
  • Felix Voigtlaender
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter is concerned with recent progress in the context of coorbit space theory. Based on a square-integrable group representation, the coorbit theory provides new families of associated smoothness spaces, where the smoothness of a function is measured by the decay of the associated voice transform. Moreover, by discretizing the representation, atomic decompositions and Banach frames can be constructed. Usually, the whole machinery works well if the associated reproducing kernel is integrable with respect to a weighted Haar measure on the group. In recent studies, it has turned out that to some extent coorbit spaces can still be established if this condition is violated. In this chapter, we clarify in which sense atomic decompositions and Banach frames for these generalized coorbit spaces can be obtained.


Coorbit theory Group representations Smoothness spaces Atomic decompositions Banach frames 



F. Voigtlaender would like to thank Werner Ricker for helpful discussions regarding idempotent Fourier multipliers.

E. De Vito and F. De Mari are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Instituto Nazionale di Alta Matematica (INdAM).


  1. 1.
    C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, third ed., Springer, Berlin, 2006.Google Scholar
  2. 2.
    H.W. Alt, Linear Functional Analysis, Universitext, Springer-Verlag London, Ltd., London, 2016.Google Scholar
  3. 3.
    A. Boettcher, Private communications.Google Scholar
  4. 4.
    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.Google Scholar
  5. 5.
    S. Dahlke, F. De Mari, E. De Vito, D. Labate, G. Steidl, G. Teschke, and S. Vigogna, Coorbit spaces with voice in a Fréchet space, J. Fourier Anal. Appl. 23 (2017), no. 1, 141–206.CrossRefGoogle Scholar
  6. 6.
    S. Dahlke, F. De Mari, P. Grohs, and D. Labate, From Group Representations to Signal Analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2015.Google Scholar
  7. 7.
    H.W. Davis, F.J. Murray, and J.K. Jr. Weber, Families of \(L_{p}\)-spaces with inductive and projective topologies, Pacific J. Math. 34 (1970), 619–638.MathSciNetCrossRefGoogle Scholar
  8. 8.
    R.M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002.Google Scholar
  9. 9.
    R.E. Edwards and G.I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer-Verlag, Berlin-New York, 1977, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 90.Google Scholar
  10. 10.
    H.G. Feichtinger, A characterization of minimal homogeneous Banach spaces, Proc. Amer. Math. Soc. 81 (1981), no. 1, pp. 55–61.MathSciNetCrossRefGoogle Scholar
  11. 11.
    H.G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods I, Math. Nachr. 123 (1985), 97–120.MathSciNetCrossRefGoogle Scholar
  12. 12.
    H.G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via integrable group representations, Function spaces and applications (Lund, 1986), Lecture Notes in Math., vol. 1302, Springer, Berlin, 1988, pp. 52–73.CrossRefGoogle Scholar
  13. 13.
    H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), no. 2, 307–340.MathSciNetCrossRefGoogle Scholar
  14. 14.
    H.G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II, Monatsh. Math. 108 (1989), no. 2-3, 129–148.Google Scholar
  15. 15.
    G.B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.Google Scholar
  16. 16.
    G.B. Folland, Real Analysis, second ed., Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1999.Google Scholar
  17. 17.
    H. Führ and K. Gröchenig, Sampling theorems on locally compact groups from oscillation estimates, Math. Z 255 (2007), 177–194.MathSciNetCrossRefGoogle Scholar
  18. 18.
    H. Führ and F. Voigtlaender, Wavelet coorbit spaces viewed as decomposition spaces, J. Funct. Anal. 269 (2015), no. 1, 80–154.MathSciNetCrossRefGoogle Scholar
  19. 19.
    K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Pure Appl. Math., CRC Press, 1984.zbMATHGoogle Scholar
  20. 20.
    L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, Springer-Verlag, New York, 2004.Google Scholar
  21. 21.
    K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991), no. 1, 1–42.Google Scholar
  22. 22.
    P.R. Halmos and V.S. Sunder, Bounded Integral Operators on \(L^{2}\)Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 96, Springer-Verlag, Berlin-New York, 1978.Google Scholar
  23. 23.
    L. Hörmander, The Analysis of Linear Partial Differential Operators – Distribution Theory and Functional Analysis, second ed., Classics in Mathematics, Springer-Verlag, Berlin, 2003.Google Scholar
  24. 24.
    V. Lebedev and A. Olevskiĭ, Idempotents of Fourier multiplier algebra, Geom. Funct. Anal. 4 (1994), no. 5, 539–544.MathSciNetCrossRefGoogle Scholar
  25. 25.
    T.J. Morrison, Functional Analysis: An Introduction to Banach Space Theory, John Wiley and Son, Inc., Hoboken, NJ, USA, 2000.Google Scholar
  26. 26.
    L. Schwartz, Théorie des Distributions., Hermann & Cie., Paris, 1966.Google Scholar
  27. 27.
    H. Triebel, Theory of Function Spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010, Reprint of 1983 edition.Google Scholar
  28. 28.
    F. Voigtlaender, Embedding Theorems for Decomposition Spaces with applications to Wavelet Coorbit Spaces, Ph.D. thesis, RWTH Aachen University, 2015.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephan Dahlke
    • 1
    Email author
  • Filippo De Mari
    • 2
  • Ernesto De Vito
    • 2
  • Lukas Sawatzki
    • 1
  • Gabriele Steidl
    • 3
  • Gerd Teschke
    • 4
  • Felix Voigtlaender
    • 5
  1. 1.FB12 Mathematik und InformatikPhilipps-Universität MarburgMarburgGermany
  2. 2.Dipartimento di MatematicaUniversità di GenovaGenovaItaly
  3. 3.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  4. 4.Institute for Computational Mathematics in Science and Technology, Hochschule NeubrandenburgUniversity of Applied SciencesNeubrandenburgGermany
  5. 5.Katholische Universität Eichstätt-IngolstadtEichstättGermany

Personalised recommendations