Endpoint Results for Fourier Integral Operators on Noncompact Symmetric Spaces

  • Tommaso Bruno
  • Anita Tabacco
  • Maria VallarinoEmail author
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Let \(\mathbb X\) be a noncompact symmetric space of rank one, and let \(\mathfrak h^1(\mathbb X)\) be a local atomic Hardy space. We prove the boundedness from \(\mathfrak {h}^1(\mathbb {X})\) to \(L^1(\mathbb {X})\) and on \(\mathfrak {h}^1(\mathbb {X})\) of some classes of Fourier integral operators related to the wave equation associated with the Laplacian on \(\mathbb X\), and we estimate the growth of their norms depending on time.



The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). This work was partially supported by the Progetto PRIN 2015 “Varietà reali e complesse: geometria, topologia e analisi armonica”. The authors would like to thank Stefano Meda, Fulvio Ricci and Peter Sjögren for helpful discussions about this work.


  1. 1.
    J.-Ph. Anker, L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, Geom. Funct. Anal. 9 (1999), no. 6, 1035–1091.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.-Ph. Anker, P. Martinot, E. Pedon, A. G. Setti, The shifted wave equation on Damek–Ricci spaces and on homogeneous trees, Trends in harmonic analysis, 1–25, Springer INdAM Ser., 3, Springer, Milan, 2013.Google Scholar
  3. 3.
    J.-Ph. Anker, V. Pierfelice, M. Vallarino, The wave equation on hyperbolic spaces, J. Differ. Equ. 252 (2012), 5613–5661.MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.-Ph. Anker, V. Pierfelice, M. Vallarino, The wave equation on Damek–Ricci spaces, Ann. Mat. Pura Appl. (4) 194 (2015), no. 3, 731–758.MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Chen, D. Fan, L. Sun, Hardy space estimates for the wave equation on compact Lie groups, J. Funct. Anal. 259 (2010), 3230–3264.MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Cowling, S. Giulini, S. Meda, Oscillatory multipliers related to the wave equation on noncompact symmetric spaces, J. London Math. Soc. 66 (2002), 691–709.MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Gangolli, V.S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
  8. 8.
    S. Giulini, S. Meda, Oscillating multipliers on noncompact symmetric spaces, J. Reine Angew. Math. 409 (1990), 93–105.Google Scholar
  9. 9.
    D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42.MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Helgason, Geometric analysis on symmetric spaces, Amer. Math. Soc., Providence, 1994.Google Scholar
  11. 11.
    S. Helgason, Groups and geometric analysis, Amer. Math. Soc., Providence, RI, 2000.Google Scholar
  12. 12.
    A. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal. 174 (2000), 274–300.Google Scholar
  13. 13.
    G. Mauceri, S. Meda, M. Vallarino, Higher order Riesz transforms on noncompact symmetric spaces. J. Lie Theory 28 (2018), no. 2, 479–497.Google Scholar
  14. 14.
    S. Meda, S. Volpi, Spaces of Goldberg type on certain measured metric spaces. Ann. Mat. Pura Appl. (4) 196 (2017), no. 3, 947–981.MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Miyachi, On some estimates for the wave equation in \(L^p\)and \(H^p\), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 331–354.Google Scholar
  16. 16.
    D. Müller, A. Seeger, Sharp \(L^p\)bounds for the wave equation on groups of Heisenberg type, Anal. PDE 8 (2015), 1051–1100.MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Müller, E.M. Stein, \(L^p\)-estimates for the wave equation on the Heisenberg group, Rev. Mat. Iberoamericana 15 (1999), 297–334.Google Scholar
  18. 18.
    J. Peral, \(L^p\)estimates for the wave equation, J. Funct. Anal. 36 (1980), 114–145.Google Scholar
  19. 19.
    A. Seeger, C. Sogge, E.M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. 134 (1991), 231–251.MathSciNetCrossRefGoogle Scholar
  20. 20.
    R.J. Stanton and P.A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251–271.MathSciNetCrossRefGoogle Scholar
  21. 21.
    D. Tataru, Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc. 353 (2001), no. 2, 795–807.MathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Taylor, Hardy spaces and \(BMO\) on manifolds with bounded geometry, J. Geom. Anal. 19 (2009), 137–190.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”Politecnico di TorinoTorinoItaly

Personalised recommendations