Advertisement

New Progress on Weighted Trudinger–Moser and Gagliardo–Nirenberg, and Critical Hardy Inequalities on Stratified Groups

  • Michael RuzhanskyEmail author
  • Nurgissa Yessirkegenov
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

In this paper, we present a summary of our recent research on local and global weighted (singular) Trudinger–Moser inequalities with remainder terms, critical Hardy-type and weighted Gagliardo–Nirenberg inequalities on general stratified groups. These include the cases of \(\mathbb R^n\) and Heisenberg groups. Moreover, the described critical Hardy-type inequalities give the critical case of the Hardy-type inequalities from [4].

Keywords

Trudinger–Moser inequality Critical Hardy inequality Stratified Lie groups 

2010 Mathematics Subject Classification:

46E35 22E30 43A80 

References

  1. 1.
    D. R. Adams. A sharp inequality of J. Moser for higher order derivatives. Ann. Math., 128:385–398, 1988.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adimurthi and K. Sandeep. A singular Moser-Trudinger embedding and its applications. NoDEA Nonlinear Differential Equations, 13(5):585–603, 2007.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Z. M. Balogh, J. J. Manfredi and J. T. Tyson. Fundamental solution for the Q-Laplacian and sharp Moser-Trudinger inequality in Carnot groups. J. Funct. Anal., 204(1):35–49, 2003.Google Scholar
  4. 4.
    P. Ciatti, M. Gowling and F. Ricci. Hardy and uncertainty inequalities on stratified Lie groups. Adv. Math., 277:365–387, 2015.MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. S. Cohn and G. Lu. Best constants for Moser-Trudinger inequalities on the Heisenberg group. Indiana Univ. Math. J., 50(4):1567–1591, 2001.MathSciNetCrossRefGoogle Scholar
  6. 6.
    W. S. Cohn and G. Lu. Best constants of Moser-Trudinger inequalities, fundamental solutions and one-parameter representation formulas on groups of Heisenberg type. Acta. Math. Sin. (Engl. Ser.), 18(2):375–390, 2002.MathSciNetCrossRefGoogle Scholar
  7. 7.
    W. Cohn, N. Lam, G. Lu and Y. Yang. The Moser-Trudinger inequality in unbounded domains of Heisenberg group and sub-elliptic equations. Nonlinear Anal., 75:4483–4495, 2012.MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Csató and P. Roy. Extremal functions for the singular Moser-Trudinger inequality in \(2\) dimensions. Calc. Var. Partial Differential Equations, 54(2):2341–2366, 2015.MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Csató and P. Roy. Singular Moser-Trudinger inequality on simply connected domains. Comm. Partial Differential Equations, 41(5):838–847, 2016.MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. B. Folland. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat., 13(2):161–207, 1975.MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. Fischer and M. Ruzhansky. Quantization on nilpotent Lie groups, volume 314 of Progress in Mathematics. Birkhäuser/Springer, [Open access book], 2016.Google Scholar
  12. 12.
    G. B. Folland and E. M. Stein. Hardy spaces on homogeneous groups, volume 28 of Mathematical Notes. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1982.Google Scholar
  13. 13.
    M. Ishiwata, M. Nakamura and H. Wadade. On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form. Ann. Inst. H. Poincare Anal. Non Lineaire, 31(2):297–314, 2014.MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Nguyen and L. Guozhen. Sharp Moser-Trudinger inequality on the Heisenberg group at the critical case and applications. Adv. Math., 231:3259–3287, 2012.Google Scholar
  15. 15.
    L. Nguyen, L. Guozhen and T. Hanli. On Nonuniformly Subelliptic Equations of Q-sub-Laplacian Type with Critical Growth in the Heisenberg Group. Adv. Nonlinear Stud., 12(3):659–681, 2012.Google Scholar
  16. 16.
    L. Nguyen, L. Guozhen and T. Hanli. Sharp subcritical Moser-Trudinger inequalities on Heisenberg groups and subelliptic PDEs. Nonlinear Anal., 95:77–92, 2014.Google Scholar
  17. 17.
    L. Nguyen and T. Hanli. Sharp constants for weighted Moser-Trudinger inequalities on groups of Heisenberg type. Nonlinear Anal., 89:95–109, 2013.Google Scholar
  18. 18.
    J. Moser. A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J., 20:1077–1092, 1979.Google Scholar
  19. 19.
    V. H. Nguyen. Sharp Caffarelli-Kohn-Nirenberg inequalities on Riemannian manifolds: the influence of curvature. arXiv:1709.06120v1, 2017.
  20. 20.
    S. Nagayasu and H. Wadade. Characterization of the critical Sobolev space on the optimal singularity at the origin. J. Funct. Anal., 258(11):3725–3757, 2010.MathSciNetCrossRefGoogle Scholar
  21. 21.
    T. Ozawa. On critical cases of Sobolev’s inequalities. J. Funct. Anal., 127:259–269, 1995.MathSciNetCrossRefGoogle Scholar
  22. 22.
    T. Ozawa. Characterization of Trudinger’s inequality. J. Inequal. Appl., 1(4):369–374, 1997.MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. I. Pohožaev. On the eigenfunctions of the equation \(\triangle u+\lambda f(u)=0\), (Russian). Dokl. Akad. Nauk. SSSR, 165:36–39, 1965.Google Scholar
  24. 24.
    M. Ruzhansky, D. Suragan and N. Yessirkegenov. Caffarelli-Kohn-Nirenberg and Sobolev type inequalities on stratified Lie groups. NoDEA Nonlinear Differential Equations Appl., 24(5):56, 2017.Google Scholar
  25. 25.
    M. Ruzhansky, D. Suragan and N. Yessirkegenov. Extended Caffarelli-Kohn-Nirenberg inequalities and superweights for \(L^{p}\)-weighted Hardy inequalities. C. R. Math. Acad. Sci. Paris, 355(6):694–698, 2017.Google Scholar
  26. 26.
    M. Ruzhansky, D. Suragan and N. Yessirkegenov. Extended Caffarelli-Kohn-Nirenberg inequalities, and remainders, stability, and superweights for \(L_{p}\)-weighted Hardy inequalities. Trans. Amer. Math. Soc. Ser. B, 5:32–62, 2018.Google Scholar
  27. 27.
    M. Ruzhansky and N. Yessirkegenov. Critical Sobolev, Gagliardo-Nirenberg, Trudinger and Brezis-Gallouet-Wainger inequalities, best constants, and ground states on graded groups. arXiv:1709.08263v1, 2017.
  28. 28.
    M. Ruzhansky and N. Yessirkegenov. Hardy, weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg type inequalities on Riemannian manifolds with negative curvature. arXiv:1802.09072, 2018.
  29. 29.
    L. Saloff-Coste. Théorèmes de Sobolev et inégalitès de Trudinger sur certains groupes de Lie. C. R. Acad. Sci. Paris, 306:305–308, 1988.Google Scholar
  30. 30.
    N. S. Trudinger. On imbeddings into Orlicz spaces and some applications. J. Math. Mech., 17:473–483, 1967.MathSciNetCrossRefGoogle Scholar
  31. 31.
    C. Yacoub. Caffarelli-Kohn-Nirenberg inequalities on Lie groups of polynomial growth. Math. Nachr., 291(1):204–214, 2018.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Y. Yang. Trudinger-Moser inequalities on the entire Heisenberg group. Math. Nachr., 287(8-9):1071–1080, 2014.MathSciNetCrossRefGoogle Scholar
  33. 33.
    V. I. Yudovič. Some estimates connected with integral operators and with solutions of elliptic equations, (Russian). Dokl. Akad. Nauk. SSSR, 138:805–808, 1961.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics: Analysis, Logic and Discrete MathematicsGhent University, Belgium and School of Mathematical Sciences, Queen Mary University of LondonLondonUK
  2. 2.Department of MathematicsImperial College LondonLondonUK
  3. 3.Institute of Mathematics and Mathematical ModellingAlmatyKazakhstan

Personalised recommendations