Skip to main content

Plasma Catalysis: Challenges and Future Perspectives

  • Chapter
  • First Online:

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 106))

Abstract

Plasma catalysis has been demonstrated as a promising alternative to thermal catalysis for environmental clean-up and the synthesis of platform chemicals and fuels from different feedstocks at low temperatures. There have been considerable and increasing research activities in this emerging and interdisciplinary field in recent years. However, plasma catalysis, particularly using a single-stage configuration, is a very complex process involving both gas-phase reactions driven by the plasma and plasma-assisted surface reactions. A number of challenges need to be addressed to achieve significant advancement in this field and the full potential of this emerging technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gao, J., Zhu, J., Ehn, A., Aldén, M., & Li, Z. (2017). In-situ non-intrusive diagnostics of toluene removal by a gliding arc discharge using planar laser-induced fluorescence. Plasma Chemistry and Plasma Processing, 37, 433–450.

    Article  Google Scholar 

  2. Teramoto, Y., Kim, H. H., Ogata, A., & Negishi, N. (2014). Measurement of OH (X2Σ) in immediate vicinity of dielectric surface under pulsed dielectric barrier discharge at atmospheric pressure using two geometries of laser-induced fluorescence. Journal of Applied Physics, 115, 133302.

    Google Scholar 

  3. Jia, Z., Wang, X., Thevenet, F., & Rousseau, A. (2017). Dynamic probing of plasma-catalytic surface processes: Oxidation of toluene on CeO2. Plasma Processes and Polymers, 14, 1600114.

    Google Scholar 

  4. Klages, C.-P., Hinze, A., & Khosravi, Z. (2013). Nitrogen plasma modification and chemical derivatization of polyethylene surfaces - an in situ study using FTIR-ATR spectroscopy. Plasma Processes and Polymers, 10, 948–958.

    Article  Google Scholar 

  5. Stere, C. E., Anderson, J. A., Chansai, S., Delgado, J. J., Goguet, A., Graham, W. G., Hardacre C., Taylor S. F. R., Tu, X., Wang, Z., & Yang, H. (2017). Non-thermal plasma activation of gold-based catalysts for low-temperature water-gas shift catalysis. Angewandte Chemie, International Edition, 56, 5579–5583.

    Google Scholar 

  6. Neyts, E. C., & Bogaerts, A. (2014). Understanding plasma catalysis through modelling and simulation-a review. Journal of Physics D: Applied Physics, 47, 224010.

    Article  ADS  Google Scholar 

  7. Somers, W., Bogaerts, A., Van Duin, A. C. T., Huygh, S., Bal, K. M., & Neyts, E. C. (2013). Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale study. Catalysis Today, 211, 131–136.

    Article  Google Scholar 

  8. Tennyson, J., Rahimi, S., Hill, C., Tse, L., Vibhakar, A., & Akello-Egwel, D. (2017). QDB: A new database of plasma chemistries and reactions. Plasma Sources Science & Technology, 26, 055014.

    Google Scholar 

  9. Bogaerts, A., De Bie, C., Eckert, M., Georgieva, V., Martens, T., Neyts, E., & Tinck, S. (2010). Modeling of the plasma chemistry and plasma-surface interactions in reactive plasmas. Pure and Applied Chemistry, 82, 1283–1299.

    Article  Google Scholar 

  10. Aerts, R., Tu, X., Van Gaens, W., Whitehead, J. C., & Bogaerts, A. (2013). Gas purification by nonthermal plasma: A case study of ethylene. Environmental Science & Technology, 47, 6478–6485.

    Article  ADS  Google Scholar 

  11. Koen Van, L., & Annemie, B. (2016). Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science and Technology, 25, 015002.

    Article  Google Scholar 

  12. Zhang, Y., Wang, H. Y., Jiang, W., & Bogaerts, A. (2015). Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 17, 12.

    Google Scholar 

  13. Van Laer, K., & Bogaerts, A. (2015). Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology, 3, 1038–1044.

    Article  Google Scholar 

  14. De Bie, C., Martens, T., van Dijk, J., Paulussen, S., Verheyde, B., Corthals, S., & Bogaerts, A. (2011). Dielectric barrier discharges used for the conversion of greenhouse gases: modeling the plasma chemistry by fluid simulations. Plasma Sources Science and Technology, 20, 024008.

    Google Scholar 

  15. Heijkers, S., Snoeckx, R., Kozák, T., Silva, T., Godfroid, T., Britun, N., Snyders, R., & Bogaerts, A. (2015). CO2 conversion in a microwave plasma reactor in the presence of N2: Elucidating the role of vibrational levels. Journal of Physical Chemistry C, 119, 12815–12828.

    Article  Google Scholar 

  16. Cleiren, E., Heijkers, S., Ramakers, M., & Bogaerts, A. (2017). Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry. ChemSusChem, 10, 4025-4036.

    Google Scholar 

  17. van Santen, R. A., Markvoort, A. J., Filot, I. A. W., Ghouri, M. M., & Hensen, E. J. M (2013). Mechanism and microkinetics of the Fischer-Tropsch reaction. Physical Chemistry Chemical Physics, 15, 17038–17063.

    Google Scholar 

  18. Filot, I. A. W., van Santen, R. A., & Hensen, E. J. M. (2014). The optimally performing Fischer-Tropsch catalyst. Angewandte Chemie-International Edition, 53, 12746–12750.

    Article  Google Scholar 

  19. Kim, J., Go, D. B., & Hicks, J. C. (2017). Synergistic effects of plasma-catalyst interactions for CH4 activation. Physical Chemistry Chemical Physics, 19, 13010–13021.

    Article  Google Scholar 

  20. Snoeckx, R., & Bogaerts, A. (2017). Plasma technology - a novel solution for CO2 conversion? Chemical Society Reviews, 46, 5805-5863.

    Google Scholar 

  21. Hessel, V., Cravotto, G., Fitzpatrick, P., Patil, B. S., Lang, J., & Bonrath, W. (2013). Industrial applications of plasma, microwave and ultrasound techniques: Nitrogen-fixation and hydrogenation reactions. Chemical Engineering and Processing, 71, 19–30.

    Article  Google Scholar 

  22. Mori, S., Matsuura, N., Tun, L. L., & Suzuki, M. (2016). Direct synthesis of carbon nanotubes from only CO2 by a hybrid reactor of dielectric barrier discharge and solid oxide electrolyser cell. Plasma Chemistry and Plasma Processing, 36, 231–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Christopher Whitehead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whitehead, J.C. (2019). Plasma Catalysis: Challenges and Future Perspectives. In: Tu, X., Whitehead, J., Nozaki, T. (eds) Plasma Catalysis. Springer Series on Atomic, Optical, and Plasma Physics, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-05189-1_11

Download citation

Publish with us

Policies and ethics