Skip to main content

The Time-Frequency Interference Terms of the Green’s Function for the Harmonic Oscillator

  • Chapter
  • First Online:
Analysis of Pseudo-Differential Operators

Part of the book series: Trends in Mathematics ((TM))

  • 481 Accesses

Abstract

The harmonic oscillator is a fundamental prototype for all types of resonances, and hence plays a key role in the study of physical systems governed by differential equations. The time-frequency representation of its Green’s function, obtained through the Wigner distribution, reveals the time-varying frequency structure of resonances. Unfortunately, the Wigner distribution of the Green’s function is affected by strong interference terms with a highly oscillatory structure. We characterize these interference terms by evaluating the ambiguity function of the Green’s function. The obtained result shows that, in the ambiguity domain, the interference terms are localized and separate from the resonance component, and hence they can be reduced by a proper filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Birkhoff, G.-C. Rota, Ordinary Differential Equations (Wiley, London, 1989)

    MATH  Google Scholar 

  2. C.J. Savant, Fundamentals of the Laplace Transformation (McGraw-Hill: New York, 1962)

    Google Scholar 

  3. L. Cohen, Time-Frequency Analysis (Prentice-Hall, Upper Saddle River, 1995)

    Google Scholar 

  4. B. Boashash (ed.), Time-Frequency Signal Analysis and Processing: A Comprehensive Reference (Academic Press, London, 2015)

    Google Scholar 

  5. T.A.C.M. Claasen, W.F.G. Mecklenbrauker, The Wigner distribution – a tool for time-frequency signal analysis. Part I: continuous time signals. Philips J. Res. 35(3), 217–250 (1980)

    MATH  Google Scholar 

  6. E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

  7. L. Galleani, A time-frequency relationship between the Langevin equation and the harmonic oscillator, in Pseudo-Differential Operators: Groups, Geometry and Applications, ed. by M.W. Wong, H. Zhu (Birkhäuser, Basel, 2007), pp. 119–131

    MATH  Google Scholar 

  8. A.H. Zemanian, Distribution Theory and Transform Analysis (Dover, New York, 1987)

    MATH  Google Scholar 

  9. L. Cohen, The history of noise. IEEE Signal Proc. Mag. 22(6), 20–45 (2005)

    Article  Google Scholar 

  10. F. Hlawatsch, Interference terms in the Wigner distribution. Digital Signal Process. 84, 363–367 (1984)

    Google Scholar 

  11. H.I. Choi, W.J. Williams, Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoust. Speech Signal Process. 37(6), 862–871 (1989)

    Article  Google Scholar 

  12. J. Jeong, W.J. Williams, Kernel design for reduced interference distributions. IEEE Trans. Signal Process. 40(2), 402–412 (1992)

    Article  Google Scholar 

  13. L. Galleani, Time-frequency representation of MIMO dynamical systems. IEEE Trans. Signal Process. 61(17), 4309–4317 (2013)

    Article  MathSciNet  Google Scholar 

  14. L. Galleani, Response of dynamical systems to nonstationary inputs. IEEE Trans. Signal Process. 60(11), 5775–5786 (2012)

    Article  MathSciNet  Google Scholar 

  15. L. Galleani, The transient spectrum of a random system. IEEE Trans. Signal Process. 58(10), 5106–5117 (2010)

    Article  MathSciNet  Google Scholar 

  16. L. Galleani, L. Cohen, Direct time-frequency characterization of linear systems governed by differential equations. IEEE Signal Process. Lett. 11(9), 721–724, (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Galleani .

Editor information

Editors and Affiliations

Appendix

Appendix

By using the property (10), the ambiguity function of the Green’s function for the Langevin equation can be obtained from

$$\displaystyle \begin{aligned} A_{h_{L}}(\theta ,\tau )=\int\limits_{-\infty }^{+\infty }\int\limits_{-\infty }^{+\infty }W_{h_{L}}(t,\omega )e^{i\theta t+i\tau \omega }dtd\omega . \end{aligned} $$
(58)

Substituting \(W_{h_{L}}(t,\omega )\) from (Fig. 1) gives

$$\displaystyle \begin{aligned} \begin{array}{rcl} A_{h_{L}}(\theta ,\tau ) &\displaystyle =&\displaystyle \int\limits_{-\infty }^{+\infty }\int\limits_{-\infty }^{+\infty }u(t)e^{-2\mu t}\frac{\sin 2\omega t}{\pi \omega }e^{i\theta t+i\tau \omega }dtd\omega , \end{array} \end{aligned} $$
(59)
$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle =&\displaystyle \int_{-\infty }^{+\infty }\frac{1}{\pi \omega }\left[ \frac{1}{2i} \int_{0}^{+\infty }e^{\left( -2\mu +i(\theta +2\omega )\right) t}dt\right. \notag \\ &\displaystyle &\displaystyle \left. \hspace{0.55in}-\frac{1}{2i}\int_{0}^{+\infty }e^{\left( -2\mu +i(\theta -2\omega )\right) t}dt\right] e^{i\tau \omega }d\omega , \end{array} \end{aligned} $$
(60)
(61-62)
$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle =&\displaystyle \frac{e^{\left( -\mu +i\theta /2\right) \left\vert \tau \right\vert }}{ 2\mu -i\theta }. \end{array} \end{aligned} $$
(63)

which is (42).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galleani, L. (2019). The Time-Frequency Interference Terms of the Green’s Function for the Harmonic Oscillator. In: Molahajloo, S., Wong, M. (eds) Analysis of Pseudo-Differential Operators. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-05168-6_9

Download citation

Publish with us

Policies and ethics