Skip to main content

Odorant-Binding Proteins in Taste System: Putative Roles in Taste Sensation and Behavior

  • Chapter
  • First Online:
Olfactory Concepts of Insect Control - Alternative to insecticides

Abstract

Animals recognize chemical environment via specific olfactory and taste sensory systems. At the most peripheral stage of the chemical environment recognition, lipophilic chemicals coming into the receptor organs as olfactory and/or taste stimulants need to interact with carrier proteins in the hydrophilic receptor ringer lymph surrounding receptor membranes of sensory neurons. They can otherwise neither reach the receptor membranes nor bind the receptor proteins. Odorant-binding proteins (OBPs) or OBP-related proteins have been reported in the taste receptor organs of various insect species. The insect taste receptor organs are sensory units called taste sensilla, which possess a set of gustatory receptor neurons (GRNs) responsible for fundamental tastes like sweetness, bitterness, etc., and a few types of auxiliary cells. It has been reported that the OBPs are required mainly for bitter taste sensation or contact chemical detection of noxious compounds. Probably, the peri-receptor system involving OBPs in the taste sensilla have developed with the ecological background of plant-herbivore interactions. Plants synthesize noxious or toxic compounds against being eaten by herbivores, and herbivores avoid them via bitter taste detection against being poisoned by plants. Considering behavioral effects of bitter or noxious taste sensation in insects, here we digest about OBPs in the taste systems with their putative roles influencing feeding, courtship or oviposition, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham D, Löfstedt C, Picimbon JF (2005) Molecular evolution and characterization of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111

    CAS  PubMed  Google Scholar 

  • Antony B, Soffan A, JakÅ¡e J, Abdelazim MM, Aldosari SA, Aldawood AS, Pain A (2016) Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics 17:69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernays EA, Chapman RF (2012) Perspectives in chemoreception and behavior. Springer, New York, ebook

    Google Scholar 

  • Billeter JC, Levine J (2013) Who is he and what he to you? Recognition in Drosophila melanogaster. Curr Opn Neurobiol 23:17–23

    Article  CAS  Google Scholar 

  • Bray S, Amrein H (2003) A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron 39:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Briscoe AD, Macias-Munoz A, Kozak KM, Walters JR, Yuan F, Jamie GA, Martin SH, Dasmahapatra KK, Ferguson LC, Mallet J, Jacquin-Joly E, Jiggins CD (2013) Female drives behaviour expression and evolution of gustatory receptors in butterflies. PLoS One 9:e1003620

    CAS  Google Scholar 

  • Cameron P, Hiroi M, Ngai J, Scott K (2010) The molecular basis for water taste in Drosophila. Nature 465:91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman RF, Bernays EA, Stoffolano JG Jr (1987) Perspectives in chemoreception and behavior. Springer-Verlag, Berlin, p 207

    Book  Google Scholar 

  • Charlu S, Wisotsky Z, Medina A, Dahanukar A (2013) Acid sensing by sweet and bitter taste neurons in Drosophila melanogaster. Nat Commun 4:2042

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wang Q, Wang Z (2010) The amiloride-sensitive epithelial Na+ channel PPK28 is essential for Drosophila gustatory water reception. J Neurosci 30:6247–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordier R (1964) Sensory cells. In: Brachet J, Mirsky AE (eds) The cell: biochemistry, physiology, morphology, vol VI. Academic, New York, pp 313–386

    Chapter  Google Scholar 

  • Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Detier VG (1976) The hungry fly: a physiological study of the behavior associated with feeding. Harvard University Press, Cambridge, MA, p 512

    Google Scholar 

  • Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, Stanke M, Schütz S, Wimmer EA, Angeli S (2014) Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. Genomics 15:1141

    PubMed  PubMed Central  Google Scholar 

  • Dunipace L, Meister S, McNealy C, Amrein H (2001) Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system. Curr Biol 11:822–835

    Article  CAS  PubMed  Google Scholar 

  • Ejima A, Griffith LC (2007) Measurement of courtship behavior in Drosophila. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot4847

  • Fan P, Manoli DS, Ahmed OM, Chen Y, Agarwal N, Kwong S, Cai AG, Neitz J, Renslo A, Baker BS, Shah NM (2013) Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell 154:89–102

    Article  CAS  PubMed  Google Scholar 

  • Fernández MP, Kravitz EA (2013) Aggression and courtship in Drosophila; Pheromonal communication and sex recognition. J Comp Physiol A 199:1065–1076

    Article  CAS  Google Scholar 

  • Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 448:1054–1057

    Article  CAS  PubMed  Google Scholar 

  • Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instr. https://doi.org/10.1094/PHI-I-2008-0226-01

  • French AS, Sellier MJ, Moutaz AA, Guigue A, Chabaud MA, Reeb PD, Mitra A, Grau Y, Soustelle L, Marion-Poll F (2015) Dual mechanism for bitter avoidance in Drosophila. J Neurosci 35:9542–9543

    Article  CAS  Google Scholar 

  • Fujikawa K, Seno K, Ozaki M (2006) A novel Takeout-like protein expressed in the taste and olfactory organs of the blowfly, Phormia regina. FEBS J 273:4311–4321

    Article  CAS  PubMed  Google Scholar 

  • Galindo K, Smith DP (2001) A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla. Genetics 159:1059–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Xia QY, Xian ZH (2009) The Odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallem EA, Dahanukar A, Carlson JR (2006) Insect odor and taste receptors. Annu Rev Entomol 51:113–135

    Article  CAS  PubMed  Google Scholar 

  • Harris N, Braiser DJ, Dickman DK, Fetter RD, Tong A, Davis GW (2015) The innate immune receptor PGRP-LC controls presynaptic homeostatic plasticity. Neuron 88:1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA (2002) Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res 12:1357–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiroi M, Marion-Poll F, Tanimura T (2002) Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool Sci 19:1009–1018

    Article  Google Scholar 

  • Hiroi M, Meunier N, Marion-Poll F, Tanimura T (2004) Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. Dev Biol 61:333–342

    Google Scholar 

  • Hodgson ES, Lettvin JY, Roeder KD (1955) The physiology of a primary chemoreceptor unit. Science 122:417–418

    Article  CAS  PubMed  Google Scholar 

  • Jallon JM (1984) A few chemical words exchanged by Drosophila during courtship and mating. Behav Genet 14:441–478

    Article  CAS  PubMed  Google Scholar 

  • Jeong YT, Shim J, Oh SR, Yoon HI, Kim CH, Moon SJ (2013) An odorant-binding protein required for suppression of sweet taste by bitter chemicals. Neuron 79:725–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones CD (1998) The genetic basis of Drosophila sechellia’s resistance to a host plant toxin. Genetics 149:1899–1908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kirkhar C, Scott K (2017) Long-range projection neurons in the taste circuit of Drosophila. eLife 6:e23386

    Google Scholar 

  • Koganezawa M, Shimada I (2002) Novel odorant-binding proteins expressed in the taste tissue of the fly. Chem Senses 27:319–332

    Article  CAS  PubMed  Google Scholar 

  • Lacaille F, Hiroi M, Twele R, Inoshita T, Umemoto D, Manière G, Marion-Poll F, Ozaki M, Francke W, Cobb M, Everaerts C, Tanimura T, Ferveur JF (2007) An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS One 2:e661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Moon SJ, Montell C (2009) Multiple gustatory receptors required for the caffeine response in Drosophila. Proc Natl Acad Sci U S A 106:4495–4500

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling F, Dahanukar A, Weiss LA, Kwon JY, Carlson JR (2014) The molecular and cellular basis of taste coding in the legs of Drosophila. J Neurosci 34:7148–7164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liscia A, Solari P (2000) Bitter taste recognition in the blowfly: electrophysiological and behavioral evidence. Physiol Behav 70:61–65

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Li ZQ, Bian L, Cai XM, Luo ZX, Zhang YJ, Chen ZM (2016) Identification and comparative study of chemosensory genes related to host selection by legs transcriptome analysis in the tea geometrid Ectropis obliqua. PLoS One 11:e0149591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Tamotsu S, Iwasaki M, Nisimura T, Shimohigashi M, Hojo MK, Ozaki M (2012) Neuronal projections and putative interaction of multimodal inputs in the subesophageal ganglion in the blowfly, Phormia regina. Chem Senses 39:391–401

    Article  CAS  Google Scholar 

  • Maeda T, Tamotsu M, Yamaoka R, Ozaki M (2015) Effects of floral scents and their dietary experiences on the feeding preference in the blowfly, Phormia regina. Front Integr Neurosci 9:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49:285–295

    Article  CAS  PubMed  Google Scholar 

  • Matsuo T (2007) Rapid evolution of two odorant-binding protein genes, Obp567d and Obp57e, in the Drosophila melanogaster species group. Genetics 178:1061–1072

    Article  CAS  Google Scholar 

  • Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride CS (2007) Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci U S A 104:4996–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride CS, Arguello JR (2007) Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177:1395–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MP, Hekmat-Scafe DS, Gaines P, Carlson JR (1994) Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J Biol Chem 269:16340–16347

    CAS  PubMed  Google Scholar 

  • McKenzie SK, Oxley PR, Kronauer DJC (2014) Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 15:718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier N, Marion-Poll F, Rospars JP, Tanimura T (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56:139–152

    Article  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Ito K (2010) Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. J Comp Neurol 518:4147–4181

    Article  PubMed  Google Scholar 

  • Montell C (2009) A taste of the Drosophila gustatory receptor. Curr Opin Neurobiol 19:345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C (2006) A taste receptor required for the caffeine response in vivo. Curr Biol 16:1812–1817

    Article  CAS  PubMed  Google Scholar 

  • Moon SJ, Lee Y, Jiao Y, Montell C (2009) A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr Biol 19:1623–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura A, Ishida Y, Takahashi A, Okamoto H, Sakabe M, Itoh M, Takano-Shimizu T, Ozaki M (2012) Starvation-induced elevation of taste responsiveness and expression of a sugar taste receptor gene in Drosophila melanogaster. J Neurogenet 26:206–215

    Article  CAS  PubMed  Google Scholar 

  • Nisimura T, Seto A, Nakamura K, Miyama M, Nagao T, Tamotsu S, Yamaoka R, Ozaki M (2005) Experiential effects of appetitive and nonappetitive odors on feeding behavior in the blowfly, Phormia regina: a putative role for tyramine in appetite regulation. J Neurosci 25:7507–7516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozaki M, Tominaga Y (1999) IV contact chemoreceptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors. Springer, Tokyo, pp 143–154

    Google Scholar 

  • Ozaki M, Morisaki K, Idei W, Ozaki K, Tokunaga F (1995) A putative lipophilic stimulant carrier protein commonly found in the taste and olfactory systems A unique member of the pheromone-binding protein superfamily. Eur J Biochem 230:298–308

    Article  CAS  PubMed  Google Scholar 

  • Ozaki M, Takahara T, Kawahara Y, Wada-Katsumata A, Seno K, Amakawa T, Yamaoka R, Nakamura T (2003) Perception of noxious compounds by contact chemoreceptors of the blowfly, Phormia regina: putative role of an odorant-binding protein. Chem Senses 28:349–359

    Article  CAS  PubMed  Google Scholar 

  • Pavlou HJ, Goodwin SF (2013) Courtship behavior in Drosophila melanogaster: towards a ‘courtship connectome. Curr Opin Neurobiol 23:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JC (2011) Mating stimulates female feeding: testing the implications for the evolution of nuptial gifts. J Evol Biol 24:1727–1736

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF (2003) Evolution and biochemistry of OBP and CSP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. SanDiego/London, pp 385–431

    Google Scholar 

  • Picimbon JF, Gadenne C (2002) Evolution of noctuid pheromone binding proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846

    Article  CAS  PubMed  Google Scholar 

  • Pikielny CW, Hasan G, Rouyer F, Rosbash M (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49

    Article  CAS  PubMed  Google Scholar 

  • Raffa KF (2014) Terpenes tell different tales at different scales: glimpses into the chemical ecology of conifer – bark beetle – microbial interactions. J Chem Ecol 40:1–20

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16:1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Gracia A, Vieira FG, Rozas J (2009) Molecular evolution of the major chemosensory gene families in insects. Heredity 103:208–216

    Google Scholar 

  • Scott K, Brady R, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104:661–673

    Article  CAS  PubMed  Google Scholar 

  • Shanbhag S, Park SK, Pikielny C, Steinbrecht RA (2001) Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304:423–437

    Article  CAS  PubMed  Google Scholar 

  • Shimaji K, Maeda T, Ozaki M, Yoshida H, Ohkawa Y, Sato T, Suyama M, Masamitsu Yamaguchi M (2017) Histone methyltransferase G9a is a key regulator of the starvation-induced behaviors in Drosophila melanogaster. Sci Rep 7:14763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shorter JR, Dembeck LM, Everett LJ, Morozova TV, Arya GH, Turlapati L, St. Armour GE, Schal C, Mackay TFC, Anholt RRH (2016) Obp56h modulates mating behavior in Drosophila melanogaster. G3 (Bethesda) 6:3335–3342

    Article  CAS  Google Scholar 

  • Slone J, Daniels J, Amrein H (2007) Sugar receptors in Drosophila. Curr Biol 17:1809–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrecht RA (1999) V olfactory receptors. In: Eguchi E, Tominaga Y (eds) Atlas of arthropod sensory receptors. Springer, Tokyo, pp 155–176

    Google Scholar 

  • Steinbrecht RA, Ozaki M, Ziegelberger G (1992) Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res 282:203–302

    Article  Google Scholar 

  • Stocker RF (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 275:3–26

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Wei Y, Zhang DD, Ma XY, Yong X, Zhang YN, Yang XM, Xiao Q, Guo YY, Zhan YJ (2016) The mouthparts enriched odorant binding protein 11 of the alfalfa plant bug Adelphocoris lineolatus displays a preferential binding behavior to host plant secondary metabolites. Front Physiol 7:21

    Article  Google Scholar 

  • Swarup S, Morozova TV, Sridhar S, Nokes M, Anholt RRH (2014) Modulation of feeding behavior by odorant-binding proteins in Drosophila melanogaster. Chem Senses 39:125–132

    Article  CAS  PubMed  Google Scholar 

  • Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K (2012) Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149:1140–1151

    Google Scholar 

  • Thorne N, Chromey C, Bray S, Amrein H (2004) Taste perception and coding in Drosophila. Curr Biol 14:1065–1079

    Article  CAS  PubMed  Google Scholar 

  • Thorne N, Bray S, Hubert A (2005) Function and expression of the Drosophila Gr Genes in the perception of sweet, bitter and pheromone compounds. Chem Senses 30:270–272

    Article  CAS  Google Scholar 

  • Ueno K, Ohta M, Morita H, Mikuni Y, Nakajima S, Yamamoto K, Isono K (2001) Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol 11:1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Vieira FG, Rozas J (2007) Comparative genomics of the odorant-binding and chemosensory protein gene families across the arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol 8:476–490

    Article  CAS  Google Scholar 

  • Vogt RG (2002) Odorant binding protein homologues of the malaria mosquito Anopheles gambiae; possible orthologues of the OS-F OBPs of Drosophila melanogaster. J Chem Ecol 11:29–36

    Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:3332–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of general odorant binding protein GOBP1 and GOBP2 from tobacco hawk moth, Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vosshall LB, Hansson BS (2011) A unified nomenclature system for the insect olfactory coreceptor. Chem Senses 36:497–498

    Article  PubMed  Google Scholar 

  • Vosshall LB, Stocker RF (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533

    Article  CAS  PubMed  Google Scholar 

  • Wada-Katsumata A, Ozaki M, Yokohari F (2009) Behavioral and electrophysiological studies on the sexually biased synergism between oligosaccharides and phospholipids in gustatory perception of nuptial secretion by the German cockroach. J Insect Physiol 55:742–750

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang NX, Niu LM, Bian SN, Xiao JH, Huang DW (2014) Odorant-binding protein (OBP) genes affect host specificity in a fig-pollinator mutualistic system. Insect Mol Biol 23:621–631

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Singhvi A, Kong P, Scott K (2004) Taste representations in the Drosophila brain. Cell 117:981–991

    Article  CAS  PubMed  Google Scholar 

  • Wanner KW, Robertson HM (2008) The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors. Insect Mol Biol 17:621–629

    Article  CAS  PubMed  Google Scholar 

  • Warwick S, Vahed K, Raubenheimer D, Simpson SJ (2009) Free amino acids as phagostimulants in cricket nuptial gifts: support for the ‘Candymaker’ hypothesis. Biol Lett 5:194–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gummienny R, Heer FT, TAP DB, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acid Res. https://doi.org/10.1093/nar/gky427

  • Weiss LA, Dahanukar A, Kwon JY, Banerjee D, Carlson JR (2011) The molecular and cellular basis of bitter taste in Drosophila. Neuron 69:258–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteman NK, Pierce NE (2007) Delicious poison: genetics of Drosophila host plant preference. Trends Ecol Evol 23:473–478

    Article  Google Scholar 

  • Wu Z, Zhang H, Wang Z, Bin S, He H, Li J (2015) Discovery of chemosensory genes in the oriental fruit fly, Bactrocera dorsalis. PLoS One 10:e0129794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu PX, Atkinson R, Jones DNM, Smith DP (2005) Drosophila OBP LUSH report is required for activity of pheromone-sensitive neurons. Neuron 45:193–200

    Article  CAS  PubMed  Google Scholar 

  • Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan N, Rajashekar B, Kasvandik S, Picimbon JF (2016) Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. Agri Gene 2:53–58

    Article  Google Scholar 

  • Yamamoto D, Koganezawa M (2013) Genes and circuits of courtship behaviour in Drosophila males. Nat Rev Neurosci 14:681–692

    Article  CAS  PubMed  Google Scholar 

  • Yasukawa J, Tomioka S, Aigaki T, Matsuo T (2010) Evolution of expression patterns of two odorant-binding protein genes, Obp57d and Obp57e, in Drosophila. Gene 467:25–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamiko Ozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozaki, M. (2019). Odorant-Binding Proteins in Taste System: Putative Roles in Taste Sensation and Behavior. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_8

Download citation

Publish with us

Policies and ethics