Skip to main content

Chemosensory Proteins: A Versatile Binding Family

  • Chapter
  • First Online:
Olfactory Concepts of Insect Control - Alternative to insecticides

Abstract

Chemosensory Proteins (CSPs), a family of small soluble polypeptides, own their name to their highly abundant expression in chemosensory organs of insects. However, CSPs are extremely versatile and perform different tasks in chemical communication, but also in unrelated functions, such as development and insecticide resistance. Their multifunction is certainly linked to their simple structure and easy refolding.

In insect chemoreception, they may perform functions similar to OBPs (Odorant-binding Proteins), another class of soluble polypeptides able to bind pheromones and odorants. Both families of proteins are reported to play roles in detecting and releasing semiochemicals with specific tasks according to species. In the first part of this review, after a brief historical introduction on their discovery, we describe structural aspects and binding properties of CSPs and compare such features with those of OBPs. Evolutionary aspects are also discussed with attention on the expansion of the CSP family across insect orders and species. The second part is focused on CSPs expressed in non-sensory organs and their possible physiological functions. Most of these proteins have been reported in pheromone glands, where they likely assist the release of chemical messages in the environment. Other functions have been reported in relation to solubilization of essential nutrients during feeding, embryo development and regeneration of amputated limbs, as well as resistance to insecticides. Finally, given the compact structure and stability of CSPs, their potential uses as biosensing elements, scavengers for noxious compounds and reservoirs for slow release of fragrances and other volatiles are proposed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angeli S, Ceron F, Scaloni A, Monti M, Monteforti G, Minnocci A, Petacchi R, Pelosi P (1999) Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from Schistocerca gregaria. Eur J Biochem 262:745–754

    Article  CAS  PubMed  Google Scholar 

  • Baer B, Zareie R, Paynter E, Poland V, Millar AH (2012) Seminal fluid proteins differ in abundance between genetic lineages of honeybees. J Proteome 75:5646–5653

    Article  CAS  Google Scholar 

  • Ban LP, Zhang L, Yan YH, Pelosi P (2002) Binding properties of a locust’s chemosensory protein. Biochem Biophys Res Commun 293:50–54

    Article  CAS  PubMed  Google Scholar 

  • Ban LP, Scaloni A, Brandazza A, Angeli S, Zhang L, Yan YH, Pelosi P (2003) Chemosensory proteins of Locusta migratoria. Insect Mol Biol 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Ban L, Napolitano E, Serra A, Zhou X, Iovinella I, Pelosi P (2013) Identification of pheromone-like compounds in male reproductive organs of the oriental locust Locusta migratoria. Biochem Biophys Res Commun 437:620–624

    Article  CAS  PubMed  Google Scholar 

  • Bautista MA, Bhandary B, Wijeratne AJ, Michel AP, Hoy CW, Mittapalli O (2015) Evidence for trade-offs in detoxification and chemosensation gene signatures in Plutella xylostella. Pest Manag Sci 71:423–432

    Article  CAS  PubMed  Google Scholar 

  • Beynon RJ, Hurst JL (2004) Urinary proteins and the modulation of chemical scents in mice and rats. Peptides 25:1553–1563

    Article  CAS  PubMed  Google Scholar 

  • Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC (2002) Characterization of a chemosensory protein (ASP3c) from honeybee (Apis mellifera L.) as a brood pheromone carrier. Eur J Biochem 269:4586–4596

    Article  CAS  PubMed  Google Scholar 

  • Bruschini C, Dani FR, Pieraccini G, Guarna F, Turillazzi S (2006) Volatiles from the venom of five species of paper wasps (Polistes dominulus, P. gallicus, P. nimphus, P. sulcifer and P. olivaceus). Toxicon 48:473–475

    Article  CAS  Google Scholar 

  • Bruschini C, Cervo R, Protti I, Turillazzi S (2008) Caste differences in venom volatiles and their effect on alarm behaviour in the paper wasp Polistes dominulus (Christ). J Exp Biol 211:2442–2449

    Article  CAS  PubMed  Google Scholar 

  • Calvello M, Guerra N, Brandazza A, D’Ambrosio C, Scaloni A, Dani FR, Turillazzi S, Pelosi P (2003) Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci 60:1933–1943

    Article  CAS  PubMed  Google Scholar 

  • Campanacci V, Lartigue A, Hallberg BM, Jones TA, Giudici-Orticoni MT, Tegoni M, Cambillau C (2003) Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc Natl Acad Sci U S A 29:5069–5074

    Article  CAS  Google Scholar 

  • Cavaggioni A, Mucignat-Caretta C (2000) Major urinary proteins, r2u-globulins and aphrodisin. Biochim Biophys Acta 1482:218–228

    Article  CAS  PubMed  Google Scholar 

  • Chang H, Liu Y, Yang T, Pelosi P, Dong S, Wang G (2015) Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Sci Rep 5:13093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng D, Lu Y, Zeng L, Liang G, He X (2015) Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Sci Rep 5:9245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-da-Silva AL, Kojin BB, Marinotti O, James AA, Capurro ML (2013) Expression and accumulation of the two-domain odorant-binding protein AaegOBP45 in the ovaries of blood-fed Aedes aegypti. Parasite Vect 6:364

    Article  CAS  Google Scholar 

  • Damberger F, Nikonova L, Horst R, Peng G, Leal WS, Wuthrich K (2000) NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci 9:1038–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dani FR, Iovinella I, Felicioli A, Niccolini A, Calvello MA, Carucci MG, Qiao H, Pieraccini G, Turillazzi S, Moneti G, Pelosi P (2010) Mapping the expression of soluble olfactory proteins in the honeybee. J Proteome Res 9:1822–1833

    Article  CAS  PubMed  Google Scholar 

  • Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, La Marca G, Niccolini A, Felicioli A, Moneti G, Pelosi P (2011) Odorant-binding proteins and Chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 36:335–344

    Article  CAS  PubMed  Google Scholar 

  • Dyanov HM, Dzitoeva SG (1995) Method for attachment of microscopic preparations on glass for in situ hybridization, PRINS and in situ PCR studies. BioTechniques 18:822–826

    CAS  PubMed  Google Scholar 

  • Eliash N, Singh NK, Thangarajan S, Sela N, Leshkowitz D, Kamer Y, Zaidman I, Rafaeli A, Soroker V (2017) Chemosensing of honeybee parasite, Varroa destructor: transcriptomic analysis. Sci Rep 7:13091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forêt S, Maleszka R (2006) Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res 16:1404–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forêt S, Wanner KW, Maleszka R (2007) Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. Insect Biochem Mol Biol 37:19–28

    Article  CAS  PubMed  Google Scholar 

  • Forstner M, Breer H, Krieger J (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Free JB (1987) Pheromones of social bees. Cornell University Press, Ithaca, p 218

    Google Scholar 

  • Gomez-Diaz C, Reina JH, Cambillau C, Benton R (2013) Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol 11:e1001546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Lin Y, Xia QY, Xiang ZH (2007) Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochem Mol Biol 37:266–277

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Pace TC, Castillo C, Bohne C, O’Neill MA, Plettner E (2009a) Ligand-interaction kinetics of the pheromone-binding protein from the gypsy moth, L. dispar: insights into the mechanism of binding and release. Chem Biol 16:162–172

    Article  CAS  PubMed  Google Scholar 

  • Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH (2009b) The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10:332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassill A, Renthal R (2009) The major antennal chemosensory protein of red imported fire ant workers. Insect Mol Biol 18:395–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Grosse-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555

    Article  CAS  PubMed  Google Scholar 

  • Gu SH, Wu KM, Guo YY, Pickett JA, Field LM, Zhou JJ, Zhang YJ (2013) Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics 14:636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L (2011) CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genet 7:e1001291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heavner ME, Gueguen G, Rajwani R, Pagan PE, Small C, Govind S (2013) Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera. Gene 526:195–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hojo MK, Ishii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M (2015) Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 5:13541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt RA et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  CAS  PubMed  Google Scholar 

  • Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 44:931–949

    Article  CAS  Google Scholar 

  • Iovinella I, Dani FR, Niccolini A, Sagona S, Michelucci E, Gazzano A, Turillazzi S, Felicioli A, Pelosi P (2011) Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. J Proteome Res 10:3439–3449

    Article  CAS  PubMed  Google Scholar 

  • Iovinella I, McAfee A, Mastrobuoni G, Kempa S, Foster LJ, Pelosi P, Dani FR (2018) Proteomic analysis of chemosensory organs in the honey bee parasite Varroa destructor: a comprehensive examination of the potential carriers for semiochemicals. J Proteome 181:131–141

    Article  CAS  Google Scholar 

  • Ishida Y, Chiang V, Leal WS (2002) Protein that makes sense in the Argentine ant. Naturwiss 89:505–507

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Ishibashi J, Leal WS (2013) Fatty acid solubilizer from the oral disk of the blowfly. PLoS One 8:e51779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquin-Joly E, Vogt RG, François MC, Nagnan-Le Meillour P (2001) Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Senses 26:833–844

    Article  CAS  PubMed  Google Scholar 

  • Jansen S, Chmelík J, Zídek L, Padrta P, Novák P, Zdráhal Z, Picimbon JF, Löfstedt C, Sklenár V (2007) Structure of Bombyx mori chemosensory protein 1 in solution. Arch Insect Biochem Physiol 66:135–145

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Brandazza A, Navarrini A, Ban L, Zhang S, Steinbrecht RA, Zhang L, Pelosi P (2005) Expression and immunolocalisation of odorant-binding and chemosensory proteins in locusts. Cell Mol Life Sci 62:56–66

    Article  CAS  Google Scholar 

  • Kitabayashi AN, Arai T, Kubo T, Natori S (1998) Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana American cockroach. Insect Biochem Mol Biol 28:785–790

    Article  CAS  PubMed  Google Scholar 

  • Kulmuni J, Havukainen H (2013) Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS One 8:e63688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulmuni J, Wurm Y, Pamilo P (2013) Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity 110:538–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larisika M, Kotlowski C, Steininger C, Mastrogiacomo R, Pelosi P, Schutz S, Peteu SF, Kleber C, Reiner-Rozman C, Nowak C, Knoll W (2015) Electronic olfactory sensor based on A. mellifera odorant-binding protein 14 on a reduced graphene oxide field-effect transistor. Angew Chemie Int Ed 54:13245–13248

    Article  CAS  Google Scholar 

  • Lartigue A, Campanacci V, Roussel A, Larsson AM, Jones TA, Tegoni M, Cambillau C (2002) X-ray structure and ligand binding study of a moth chemosensory protein. J Biol Chem 277:32094–32098

    Article  CAS  PubMed  Google Scholar 

  • Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol 58:373–391

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Nikonova L, Peng G (1999) Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett 464:85–90

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Picimbon JF, Ji SD, Kan YC, Qiao CL, Zhou JJ, Pelosi P (2008) Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti. Biochem Biophys Res Commun 372:464–468

    Article  CAS  PubMed  Google Scholar 

  • Liu GX, Xuan N, Chu D, Xie HY, Fan ZX, Bi YP, Picimbon JF, Qin YC, Zhong ST, Li YF, Gao ZL, Pan WL, Wang GY, Rajashekar B (2014a) Biotype expression and insecticide response of Bemisia tabaci chemosensory protein-1. Arch Insect Biochem Physiol 85:137–151

    Article  CAS  PubMed  Google Scholar 

  • Liu YL, Guo H, Huang LQ, Pelosi P, Wang CZ (2014b) Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J Exp Biol 217:1821–1826

    Article  PubMed  Google Scholar 

  • Liu GX, Ma H, Xie H, Xuan N, Guo X, Fan Z, Rajashekar B, Arnaud P, Offmann B, Picimbon JF (2016) Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS One 11:e0154706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loebel D, Scaloni A, Paolini S, Fini C, Ferrara L, Breer H, Pelosi P (2000) Cloning, post-translational modifications, heterologous expression, ligand-binding and modelling of boar salivary lipocalin. Biochem J 350:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleszka R, Stange G (1997) Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth Cactoblastis cactorum. Gene 202:39–43

    Article  CAS  PubMed  Google Scholar 

  • Maleszka J, Forêt S, Saint R, Maleszka R (2007) RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee Apis mellifera. Dev Genes Evol 217:189–196

    Article  CAS  PubMed  Google Scholar 

  • Mameli M, Tuccini A, Mazza M, Petacchi R, Pelosi P (1996) Soluble proteins in chemosensory organs of phasmids. Insect Biochem Mol Biol 26:875–882

    Article  CAS  PubMed  Google Scholar 

  • Marchese S, Pes D, Scaloni A, Carbone V, Pelosi P (1998) Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem 252:563–568

    Article  CAS  PubMed  Google Scholar 

  • Marchese S, Angeli S, Andolfo A, Scaloni A, Brandazza A, Mazza M, Picimbon JF, Leal WS, Pelosi P (2000) Soluble proteins from chemosensory organs of Eurycantha calcarata (Insecta, Phasmatodea). Insect Biochem Mol Biol 30:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Marinotti O, Ngo T, Kojin BB, Chou SP, Nguyen B, Juhn J, Carballar-Lejarazú R, Marinotti PN, Jiang X, Walter MF, Tu Z, Gershon PD, James AA (2014) Integrated proteomic and transcriptomic analysis of the Aedes aegypti eggshell. BMC Dev Biol 14:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastrobuoni G, Qiao H, Iovinella I, Sagona S, Niccolini A, Boscaro F, Caputo B, Orejuela MR, dellaTorre A, Kempa S, Felicioli A, Pelosi P, Moneti G, Dani FR (2013) A proteomic investigation of soluble olfactory proteins in Anopheles gambiae. PLoS One 8:e75162

    Article  PubMed  PubMed Central  Google Scholar 

  • Mastrogiacomo R, D’Ambrosio C, Niccolini A, Serra A, Gazzano A, Scaloni A, Pelosi P (2014) An odorant-binding protein is abundantly expressed in the nose and in the seminal fluid of the rabbit. PLoS One 9:111932

    Article  CAS  Google Scholar 

  • Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna MP, Hekmat-Scafe DS, Gaines P, Carlson JR (1994) Putative Drosophila pheromone-binding proteins expressed in a sub-region of the olfactory system. J Biol Chem 269:16340–16347

    CAS  PubMed  Google Scholar 

  • McKenzie SK, Oxley PR, Kronauer DJC (2014) Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genomics 15:718–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missbach C, Vogel H, Hansson BS, Groβe-Wilde E (2015) Identification of odorant binding proteins and chemosensory proteins in antennal transcriptomes of the jumping bristletail Lepismachilis y-signata and the firebrat Thermobia domestica: evidence for an independent OBP-OR origin. Chem Senses 40:615–626

    Article  CAS  PubMed  Google Scholar 

  • Monaco HL (2000) The transthyretin-retinol-binding protein complex. Biochim Biophys Acta 1482:65–72

    Article  CAS  PubMed  Google Scholar 

  • Monteforti G, Angeli S, Petacchi R, Minnocci A (2002) Ultrastructural characterization of antennal sensilla and immunocytochemical localization of a chemosensory protein in Carausius morosus Brünner (Phasmida: Phasmatidae). Arthropod Struct Dev 30:195–205

    Article  CAS  PubMed  Google Scholar 

  • Mulla MY, Tuccori E, Magliulo M, Lattanzi G, Palazzo G, Persaud K, Torsi L (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6:6010

    Article  CAS  PubMed  Google Scholar 

  • Nagnan-Le Meillour P, Cain AH, Jacquin-Joly E, François MC, Ramachandran S, Maida R, Steinbrecht RA (2000) Chemosensory proteins from the proboscis of Mamestra brassicae. Chem Sens 25:541–553

    Article  CAS  Google Scholar 

  • Newcomer ME, Ong DE (2000) Plasma retinol binding protein: structure and function of the prototypic lipocalin. Biochim Biophys Acta 1482:57–64

    Article  CAS  PubMed  Google Scholar 

  • Nomura A, Kawasaki K, Kubo T, Natori S (1992) Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana American cockroach. Int J Dev Biol 36:391–398

    CAS  PubMed  Google Scholar 

  • Ono M, Terabe H, Hori H, Sasaki M (2003) Insect signalling: components of giant hornet alarm pheromone. Nature 424:637–638

    Article  CAS  PubMed  Google Scholar 

  • Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P (1994) Odorant-binding proteins. Crit Rev Biochem Mol Biol 29:199–228

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201:245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Iovinella I, Felicioli A, Dani FR (2014a) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelosi P, Mastrogiacomo R, Iovinella I, Tuccori E, Persaud KC (2014b) Structure and biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 98:61–70

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR (2018a) Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc 93:184–200

    Article  PubMed  Google Scholar 

  • Pelosi P, Zhu J, Knoll W (2018b) Odorant-binding proteins as sensing elements for odour monitoring. Sensors 18(10):3248

    Article  CAS  PubMed Central  Google Scholar 

  • Picimbon JF (2003) Biochemistry and evolution of CSP and OBP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology – the biosynthesis and detection of pheromones and plant volatiles. Elsevier, London/San Diego, pp 539–566

    Chapter  Google Scholar 

  • Picimbon JF, Leal WS (1999) Olfactory soluble proteins of cockroaches. Insect Biochem Mol Biol 30:973–978

    Article  Google Scholar 

  • Picimbon JF, Dietrich K, Breer H, Krieger J (2000a) Chemosensory proteins of Locusta migratoria (Orthoptera: Acrididae). Insect Biochem Mol Biol 30:233–241

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Breer H, Pelosi P (2000b) Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol 44:120–129

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Krieger J, Breer H (2001) Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochem Mol Biol 31:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Pikielny CW, Hasan G, Rouyer F, Rosbash H (1994) Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron 12:35–49

    Article  CAS  PubMed  Google Scholar 

  • Qiao H, Tuccori E, He X, Gazzano A, Field L, Zhou JJ, Pelosi P (2009) Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem Mol Biol 39:414–419

    Article  CAS  PubMed  Google Scholar 

  • Renthal R, Manghnani L, Bernal S, Qu Y, Griffith WP, Lohmeyer K, Guerrero FD, Borges LMF, Pérez de León A (2017) The chemosensory appendage proteome of Amblyomma americanum (Acari: Ixodidae) reveals putative odorant-binding and other chemoreception-related proteins. Insect Sci 24:730–742

    Article  CAS  PubMed  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 11:1395–1403

    Article  CAS  Google Scholar 

  • Robertson HM, Gadau J, Wanner KW (2010) The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol 19(Suppl 1):121–136

    Article  CAS  PubMed  Google Scholar 

  • Sabatier L, Jouanguy E, Dostert C, Zachary D, Dimarcq JL, Bulet P, Imler JL (2003) Pherokine-2 and -3: two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur J Biol 270:3398–3407

    Article  CAS  Google Scholar 

  • Sánchez-Gracia A, Vieira FG, Rozas J (2009) Molecular evolution of the major chemosensory gene families in insects. Hered (Edinb) 103:208–216

    Article  CAS  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  CAS  PubMed  Google Scholar 

  • Scaloni A, Monti M, Angeli S, Pelosi P (1999) Structural analyses and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun 266:386–391

    Article  CAS  PubMed  Google Scholar 

  • Spinelli S, Vincent F, Pelosi P, Tegoni M, Cambillau C (2002) Boar salivary lipocalin: three-dimensional X-ray structure and androstenol/androstenone docking simulations. Eur J Biochem 269:2449–2456

    Article  CAS  PubMed  Google Scholar 

  • Strandh M, Johansson T, Löfstedt C (2009) Global transcriptional analysis of pheromone biosynthesis-related genes in the female turnip moth, Agrotis segetum (Noctuidae) using a custom-made cDNA microarray. Insect Biochem Mol Biol 39:484–489

    Article  CAS  PubMed  Google Scholar 

  • Sun YF, De Biasio F, Qiao HL, Iovinella I, Yang SX, Ling Y, Riviello L, Battaglia D, Falabella P, Yang XL, Pelosi P (2012a) Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (E)-ß-farnesene and structural analogues. PLoS One 7:e32759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YL, Huang LQ, Pelosi P, Wang CZ (2012b) Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species. PLoS One 7:e30040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Liu Y, Walker WB, Liu C, Lin K, Gu S, Zhang Y, Zhou J, Wang G (2013) Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, Plutella xyllostella. PLoS One 8:e62098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Guan L, Feng H, Yin J, Cao Y, Xi J, Li K (2014) Functional characterization of chemosensory proteins in the scarab beetle, Holotrichia oblita Faldermann (Coleoptera: Scarabaeida). PLoS One 9:e107059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarup S, Williams TI, Anholt RR (2011) Functional dissection of odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav 10:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegoni M, Pelosi P, Vincent F, Spinelli S, Campanacci V, Grolli S, Ramoni R, Cambillau C (2000) Mammalian odorant binding proteins. Biochim Biophys Acta 1482:229–240

    Article  CAS  PubMed  Google Scholar 

  • Tegoni M, Campanacci V, Cambillau C (2004) Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem Sci 29:257–264

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli S, Crescenzi O, Sanfelice D, Ab E, Wechselberger R, Angeli S, Scaloni A, Boelens R, Tancredi T, Pelosi P, Picone D (2006) Solution structure of a chemosensory protein from the desert locust Schistocerca gregaria. Biochemistry 45:10606–10613

    Article  CAS  PubMed  Google Scholar 

  • Tuccini A, Maida R, Rovero P, Mazza M, Pelosi P (1996) Putative odorant-binding proteins in antennae and legs of Carausius morosus Insecta, Phasmatodea. Insect Biochem Mol Biol 26:19–24

    Article  CAS  PubMed  Google Scholar 

  • Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira FG, Forêt S, He X, Rozas J, Field LM, Zhou JJ (2012) Unique features of odorant-binding proteins of the parasitoid wasp Nasonia vitripennis revealed by genome annotation and comparative analyses. PLoS One 7:e43034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizueta J, Frías-López C, Macías-Hernández N, Arnedo MA, Sánchez-Gracia A, Rozas J (2017) Evolution of chemosensory gene families in arthropods: insight from the first inclusive comparative transcriptome analysis across spider appendages. Genome Biol Evol 9:178–196

    CAS  PubMed  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhao M, Rotgans BA, Ni G, Dean JF, Nahrung HF, Cummins SF (2016) Proteomic analysis of the venom and venom sac of the woodwasp, Sirex noctilio – towards understanding its biological impact. J Proteome 146:195–206

    Article  CAS  Google Scholar 

  • Wanner KW, Willis LG, Theilmann DA, Isman MB, Feng Q, Plettner E (2004) Analysis of the insect OS-D-like gene family. J Chem Ecol 30:889–911

    Article  CAS  PubMed  Google Scholar 

  • Werren JH et al. (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343–348

    Google Scholar 

  • Xia YH, Zhang YN, Hou XQ, Li F, Dong SL (2015) Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis. Sci Rep 5:7888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu PX, Zwiebel LJ, Smith DP (2003) Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 12:549–560

    Article  CAS  PubMed  Google Scholar 

  • Xu PX, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45:193–200

    Article  CAS  PubMed  Google Scholar 

  • Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF (2015) Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci 22:203–219

    Article  CAS  PubMed  Google Scholar 

  • Zhang YN, Zhu XY, Fang LP, He P, Wang ZQ, Chen G, Sun L, Ye ZF, Deng DG, Li JB (2015) Identification and expression profiles of sex pheromone biosynthesis and transport related genes in Spodoptera litura. PLoS One 10:e0140019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Wang B, Grossi G, Falabella P, Liu Y, Yan S, Lu J, Xi J, Wang G (2017) Molecular basis of alarm pheromone detection in aphids. Curr Biol 27:55–61

    Article  CAS  PubMed  Google Scholar 

  • Zhou JJ, Huang W, Zhang GA, Pickett JA, Field LM (2004) “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327:117–129

    Article  CAS  PubMed  Google Scholar 

  • Zhou XH, Ban LP, Iovinella I, Zhao LJ, Gao Q, Felicioli A, Sagona S, Pieraccini G, Pelosi P, Zhang L, Dani FR (2013) Diversity, abundance and sex-specific expression of chemosensory proteins in the reproductive organs of the locust Locusta migratoria manilensis. Biol Chem 394:43–54

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Iovinella I, Dani FR, Liu YL, Huang LQ, Liu Y, Wang CZ, Pelosi P, Wang GR (2016) Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. Int J Biol Sci 12:1394–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Pelosi or Guirong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, J., Iovinella, I., Dani, F.R., Pelosi, P., Wang, G. (2019). Chemosensory Proteins: A Versatile Binding Family. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_6

Download citation

Publish with us

Policies and ethics