Skip to main content

Binding Interactions, Structure-Activity Relationships and Blend Effects in Pheromone and Host Olfactory Detection of Herbivorous Lepidoptera

  • Chapter
  • First Online:
Olfactory Concepts of Insect Control - Alternative to insecticides

Abstract

Herbivorous moths (Lepidoptera) use their chemical senses (olfaction and gustation) for choosing their food (during larval stages) and for finding a mate (during adult life). Insects use chemosensory sensilla, hollow cuticular hairs that are innervated, for sensing chemical stimuli in their environment. These chemical stimuli (host plant odorants and pheromones) interact with the molecular components of the sensilla, which include: odorant-binding proteins (OBPs), odorant receptors (ORs) with their co-receptor (ORCO) and ionotropic receptors (IRs). Here we review the structures of moth pheromones and general odorants, as well as structural analogs, and how these molecules interact with OBPs, the structurally best characterized molecular components of insect chemosensory systems. We also review structure-activity relationships that have been obtained with systematically varied odorants. The activities that have been monitored include electrophysiological and behavioral responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham D, Löfstedt C, Picimbon JF (2005) Molecular evolution and characterization of pheromone binding protein genes in Agrotis moths. Insect Biochem Mol Biol 35:1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Adachi Y, Do ND, Kinjo SD, Yamakawa M, Mori K, Ando T (2010) Positions and stereochemistry of methyl branches in the novel sex pheromone components produced by a lichen moth. Lyclene dharma dharma. J Chem Ecol 36:814–823

    Article  CAS  PubMed  Google Scholar 

  • Akhtar Y, Isman MB, Paduraru PM, Nagabandi S, Nair R, Plettner E (2007) Screening of dialkoxy benzenes and disubstituted cyclopentene derivatives against a noctuid caterpillar Trichoplusia ni, for the discovery of new feeding and oviposition deterrents. J Agric Food Chem 55:10323–10330

    Article  CAS  PubMed  Google Scholar 

  • Akhtar Y, Yu Y, Isman MB, Plettner E (2010) Dialkoxybenzene and dialkoxy-allylbenzene feeding and oviposition deterrents against the cabbage looper, Trichoplusia ni: potential insect behavior control agents. J Agric Food Chem 58:4983–4991

    Article  CAS  PubMed  Google Scholar 

  • Anderson AR, Wanner KW, Trowell SC, Warr CG, Jaquin-Joly E, Zagatti P, Robertson H, Newcomb RD (2009) Molecular basis of female-specific odorant responses in Bombyx mori. Insect Biochem Mol Biol 39:189–197

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Inomata S, Yamamoto M (2004) Lepidopteran sex pheromones. Top Curr Chem 239:51–96

    Article  CAS  PubMed  Google Scholar 

  • Ban L, Zhang L, Yan Y, Pelosi P (2002) Binding properties of a locust’s chemosensory protein. Biochem Biophys Res Commun 293:50–54

    Article  CAS  PubMed  Google Scholar 

  • Benton R, Sachse S, Michnick SW, Vosshall LB (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 4:e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293

    Article  CAS  PubMed  Google Scholar 

  • Bierl B, Beroza M, Collier C (1970) Potent sex attractant of the gypsy moth: its isolation, identification, and synthesis. Science 170:87–89

    Article  CAS  PubMed  Google Scholar 

  • Bouwer M, Slippers B, Degefu D, Wingfield M, Lawson S, Rohwer E (2015) Identification of the sex pheromone of the tree infesting cossid moth Coryphodema tristis (Lepidoptera: Cossidae). PLoS One 10:e0118575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  CAS  PubMed  Google Scholar 

  • Burger H, Ayasse M, Dötterl S, Kreissl S, Galizia CG (2013) Perception of floral volatiles involved in host-plant finding behaviour: comparison of a bee specialist and generalist. J Comp Physiol 199:751–761

    Article  CAS  Google Scholar 

  • Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14b:283–284

    Google Scholar 

  • Cameron LM, Rogers M, Aalhus M, Seward B, Yu Y, Plettner E (2014) Feeding deterrence of cabbage looper (Lepidoptera: Noctuidae) by 1-allyloxy-4-propoxybenzene, alone and blended with neem extract. J Econ Entomol 107:2119–2129

    Article  PubMed  Google Scholar 

  • Camps F, Gasol V, Guerrero A, Hernández R, Montoya R (1990) Inhibition of the processionary moth sex pheromone by some haloacetate analogues. Pestic Sci 29:123–134

    Article  CAS  Google Scholar 

  • Cao S, Liu Y, Guo M, Wang G (2016) A conserved odorant receptor tuned to floral volatiles in three heliothinae species. PLoS One 11:e0155029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Liu Y, Yang T, Pelosi P, Dong S, Wang G (2015) Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Sci Rep 5:13093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H, Guo M, Wang B, Liu Y, Dong S, Wang G (2016) Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components. Sci Rep 6:18742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Gong Y, Gries RM, Plettner E (2010) Synthesis and biological activity of conformationally restricted gypsy moth pheromone mimics. Bioorg Med Chem 18:2920–2929

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZQ, Xiao JC, Huang XT, Chen DL, Li JQ, He YS, Huang SR, Luo QC, Yang CM, Yang TH (1981) Sex pheromone components isolated from China corn borer,Ostrinia furnacalis, Guenee (Lepidoptera: Pyralidae), (E)- and (Z)-12-tetradecenyl acetates. J Chem Ecol 7:841–851

    Article  CAS  PubMed  Google Scholar 

  • Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338

    Article  CAS  PubMed  Google Scholar 

  • Cork A, Boo KS, Dunkelblum E, Hall DR, Jee-Rajunga K, Kehat M, Kong Jie E, Park KC, Tepgidagarn P, Xun L (1992) Female sex pheromone of oriental tobacco budworm, Helicoverpa assulta (Guenée) (Lepidoptera: Noctuidae): identification and field testing. J Chem Ecol 18:403–418

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JP (2012) Can mechanism help explain insect host choice? J Evol Biol 25:244–251

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JP, Zalucki MP (2014) Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? J Econ Entomol 107:881–896

    Article  PubMed  Google Scholar 

  • Damberger FF, Ishida Y, Leal WS, Wuthrich K (2007) Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J Mol Biol 373:811–819

    Article  CAS  PubMed  Google Scholar 

  • De Moares CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  CAS  Google Scholar 

  • di Luccio E, Ishida Y, Leal WS, Wilson DK (2013) Crystallographic observation of pH-induced conformational changes in the Amyelois transitella pheromone-binding protein AtraPBP1. PLoS One 8:e53840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faucheux MJ (1995) Sensilla on the larval antennae and mouthparts of the european sunflower moth, Homoeosoma nebulella Den. and Schiff. (Lepidoptera: Pyralidae). Int J Insect Morphol Embryol 24:391–403

    Article  Google Scholar 

  • Feng L, Prestwich GD (1997) Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochem Mol Biol 27:405–412

    Article  CAS  PubMed  Google Scholar 

  • Forstner M, Breer H, Krieger J (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Zhang T, Wang Z, He K, Bai S (2016) Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome. Sci Rep 6:32636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, Graf M, Ong H, Ulbrich MH, Masson JF, Benton R (2016) A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun 7:11866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Plettner E (2011) Effects of aromatic compounds on antennal responses and on the pheromone-binding proteins of the gypsy moth (Lymantria dispar). Chem Senses 36:291–300

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Pace TCS, Castillo C, Bohne C, O’Neill MA, Plettner E (2009) Ligand-interaction kinetics of the pheromone-binding protein from the gypsy moth, L. dispar: insights into the mechanism of binding and release. Chem Biol 16:162–172

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Tang H, Bohne C, Plettner E (2010) Binding conformation and kinetics of two pheromone-binding proteins from the gypsy moth Lymantria dispar with biological and nonbiological ligands. Biochemistry 49:793–801

    Article  CAS  PubMed  Google Scholar 

  • Grosse-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the Bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555

    Article  CAS  PubMed  Google Scholar 

  • Grosse-Wilde E, Gohl T, Bouche E, Breer H, Krieger J (2007) Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci 25:2364–2373

    Article  PubMed  Google Scholar 

  • Grosse-Wilde E, Kuebler LS, Bucks S, Vogel H, Wicher D, Hansson BS (2011) Antennal transcriptome of Manduca sexta. Proc Natl Acad Sci U S A 108:7449–7454

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu SH, Zhou JJ, Wang GR, Zhang YJ, Guo YY (2013) Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol Biol 43:237–251

    Article  CAS  PubMed  Google Scholar 

  • Guerrero A, Camps F, Coll J, Riba M, Einhorn J, Descoins C, Lallemand JY (1981) Identification of a potential sex pheromone of the processionary moth Thaumetopoea pityocampa. Tetrahedron Lett 22:2013–2016

    Article  CAS  Google Scholar 

  • Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, 4th edn. Wiley-Blackwell, Chichester, p 584

    Google Scholar 

  • Guo H, Huang LQ, Pelosi P, Wang CZ (2012) Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone compounds. Insect Biochem Mol Biol 42:708–716

    Article  CAS  PubMed  Google Scholar 

  • He X, Tzotzos G, Woodcock C, Pickett JA, Hooper T, Field LM, Zhou JJ (2010) Binding of the general odorant binding protein of Bombyx mori BmorGOBP2 to the moth sex pheromone components. J Chem Ecol 36:1293–1305

    Article  CAS  PubMed  Google Scholar 

  • Hill AS, Rings RW, Swier SR, Roelofs WL (1979) Sex pheromone of the black cutworm moth, Agrotis ipsilon. J Chem Ecol 5:439–457

    Article  CAS  Google Scholar 

  • Hillier N, Kavanagh R (2015) Differential octopaminergic modulation of olfactory receptor neuron responses to sex pheromones in Heliothis virescens. PLoS One 10:e0143179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honson NS, Plettner E (2006) Disulfide connectivity and reduction in pheromone-binding proteins of the gypsy moth, Lymantria dispar. Naturwissenschaften 93:267–277

    Article  CAS  PubMed  Google Scholar 

  • Honson NS, Johnson MA, Oliver JE, Prestwich GD, Plettner E (2003) Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem Senses 28:479–489

    Article  CAS  PubMed  Google Scholar 

  • Honson NS, Gong Y, Plettner E (2005) Structure and function of insect odorant and pheromone-binding Proteins (OBPs and PBPs) and chemosensory-specific proteins (CSPs). In: Romeo J (ed) Chemical ecology and phytochemistry of forest ecosystems: proceedings of the Phytochemical Society of North America. Elsevier, Amsterdam, pp 228–268

    Google Scholar 

  • Ishida Y, Tsuchiya W, Fuji T, Fujimoto Z, Miyazawa M, Ishibashi J, Matsuyama S, Ishikawa Y, Yamazaki T (2014) Niemann-Pick type C2 protein mediating chemical communication in the worker ant. Proc Natl Acad Sci U S A 111:3847–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci U S A 105:10996–11001

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordan MD, Anderson A, Begum D, Carraher C, Authier A, Marshall SDG, Kiely A, Gatehouse LN, Greenwood DR, Christie DL, Kralicek AV, Trowell SC, Newcomb RD (2009) Odorant receptors from the light brown apple moth (Epiphyas postvittana) recognize important volatile compounds produced by plants. Chem Senses 34:383–394

    Article  CAS  PubMed  Google Scholar 

  • Kaissling KE (2001) Olfactory perireceptor and receptor events in moths: a kinetic model. Chem Senses 26:125–150

    Article  CAS  PubMed  Google Scholar 

  • Kaissling K, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Sattelle D, Hall L, Hildebrand J (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam, pp 261–282

    Google Scholar 

  • Kaissling KE, Keil TA, Williams JLD (1991) Pheromone stimulation in perfused sensory hairs of the moth Antheraea polyphemus. J Insect Physiol 37:71–78

    Article  Google Scholar 

  • Kanaujia S, Kaissling KE (1985) Interactions of pheromone with moth antennae: adsorption, desorption and transport. J Insect Physiol 31:71–81

    Article  CAS  Google Scholar 

  • Katre UV, Mazumder S, Prusti RK, Mohanty S (2009) Ligand binding turns moth pheromone-binding protein into a pH sensor, effect on the Antheraea polyphemus PBP1 conformation. J Biol Chem 284:32167–32177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katre UV, Mazumder S, Mohanty S (2013) Structural insights into the ligand binding and releasing mechanism of Antheraea polyphemus pheromone-binding protein 1: role of the C-terminal tail. Biochemistry 52:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Keil TA (1984) Reconstruction and morphometry of silkworm olfactory hairs: a comparative study of sensilla trichodea on the antennae of male Antheraea polyphemus and Antheraea pernyi (Insecta, Lepidoptera). Zoomorphology 104:147–156

    Article  Google Scholar 

  • Kochansky J, Carde RT, Liebherr J, Roelofs WL (1975) Sex pheromone of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae), in New york. J Chem Ecol 1:225–231

    Article  CAS  Google Scholar 

  • Koh YH, Park KC, Boo KS (1995) Antennal sensilla in adult Helicoverpa assulta (Lepidoptera: Noctuidae): morphology, distribution, and ultrastructure. Ann Entomol Soc Am 88:519–530

    Article  Google Scholar 

  • Krieger J, Raming K, Dewer YME, Bette S, Conzelmann S, Breer H (2002) A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur J Neurosci 16:619–628

    Article  PubMed  Google Scholar 

  • Krieger J, Grosse-Wilde E, Gohl T, Dewer YME, Raming K, Breer H (2004) Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc Natl Acad Sci U S A 101:11845–11850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger J, Grosse-Wilde E, Gohl T, Breer H (2005) Candidate pheromone receptors of the silkmoth Bombyx mori. Eur J Neursci 21:2167–2176

    Article  Google Scholar 

  • Krieger J, Gondensen I, Forstner M, Gohl T, Dewer Y, Breer H (2009) HR11 and HR13 receptor-expressing neurons are housed together in pheromone-responsive sensilla trichodea of male Heliothis virescens. Chem Senses 34:469–477

    Article  CAS  PubMed  Google Scholar 

  • Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Chen AM, Ishida Y, Chiang VP, Erickson ML, Morgan TI, Tsuruda JM (2005) Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A 102:5386–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal WS, Ishida Y, Pelletier J, Xy W, Rayo J, Xu X, Ames JB (2009) Olfactory proteins mediating chemical communication in the navel orangeworm moth, Amyelois transitella. PLoS One 4:e7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE Jr, Macallister IE, Kavanaugh MP, Wanner KW (2012) Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci U S A 109:14081–14086

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Strausfeld NJ (1990) Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth Manduca sexta. J Neurocytol 19:519–538

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Damberger FF, Peng G, Horst R, Guntert P, Nikonova L, Leal WS, Wuthrich K (2002) NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett 531:314–318

    Article  CAS  PubMed  Google Scholar 

  • Li G, Chen X, Li B, Zhang G, Li Y, Wu J (2016a) Binding properties of general odorant binding proteins from the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae). PLoS One 11:e0155096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhang Y, Li YP, Wu JX, Xu XL (2016b) Cloning expression and functional analysis of three odorant-binding proteins of the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Arch Insect Biochem Physiol 91:67–87

    Article  CAS  PubMed  Google Scholar 

  • Li PY, Qin YC (2011) Molecular cloning and characterization of sensory neuron membrane protein and expression pattern analysis in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Appl Entomol Zool 46:497–504

    Article  CAS  Google Scholar 

  • Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10:e1004600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZQ, Zhang S, Luo JY, Cui JJ, Ma Y, Dong SL (2013) Two Minus-C odorant binding proteins from Helicoverpa armigera display higher ligand binding affinity at acidic pH than neutral pH. J Insect Physiol 59:263–272

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Yu Y, Zhou P, Zhang J, Dou L, Hao Q, Chen H, Zhu S (2015) Identification and knockdown of the olfactory receptor (OrCo) in gypsy moth, Lymantria dispar. Int J Biol Sci 11:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu NY, Yang F, Yang K, He P, Niu XH, Xu W, Anderson A, Dong SL (2014a) Two subclasses of odorant-binding proteins in Spodoptera exigua display structural conservation and functional divergence. Insect Mol Biol 24:167–182

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhang J, Liu Y, Wang G, Dong S (2014b) Expression of SNMP1 and SNMP2 genes in antennal sensilla of Spodoptera exigua (Hubner). Arch Insect Biochem Physiol 85:114–126

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhang YR, Zhou WW, Liang QM, Yuan X, Cheng J, Zhu ZR, Gong ZJ (2013a) Identification and characterization of two sensory neuron membrane proteins from Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Arch Insect Biochem Physiol 82:29–42

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Qiao F, Liang QM, Huang YJ, Zhou WW, Gong ZJ, Cheng J, Zhu ZR (2013b) Molecular characterization of two sensory neuron membrane proteins from Chilo suppressalis (Lepidoptera: Pyralidae). Ann Entomol Soc Am 106:378–384

    Article  CAS  Google Scholar 

  • Liu YP, Liu Y, Yang T, Gui FR, Wang GR (2015) Identification and characterization of a general odorant receptor gene PxylOR9 in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Acta Entomol Sin 58:507–515

    CAS  Google Scholar 

  • Liu Z, Hua B, Liu L (2011) Ultrastructure of the sensilla on larval antennae and mouthparts in the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Micron 42:478–483

    Article  PubMed  Google Scholar 

  • Lundin C, Kall L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, von Heijne G, Nilsson I (2007) Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett 581:5601–5604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma M, Chang MM, Lei CL, Yang FL (2016) A garlic substance disrupts odorant-binding protein recognition of insect pheromones released from adults of the angoumois grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae). Insect Mol Biol 25:530–540

    Article  CAS  PubMed  Google Scholar 

  • Maida R, Krieger J, Gebauer T, Lange U, Ziegelberger G (2000) Three pheromone-binding proteins in olfactory sensilla of the two silkmoth species Antheraea polyphemus and Antheraea pernyi. Eur J Biochem 267:2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Maida R, Ziegelberger G, Kaissling KE (2003) Ligand binding to six recombinant pheromone-binding proteins of Antheraea polyphemus and Antheraea pernyi. J Comp Physiol B 173:565–573

    Article  CAS  PubMed  Google Scholar 

  • Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivorous pests: exploiting resistance and tolerance traints for sustainable crop protection. Front Plant Sci 7:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohanty S, Zubkov S, Gronenborn AM (2004) The solution NMR of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding Proteins. J Mol Biol 337:443–451

    Article  PubMed  Google Scholar 

  • Nakagawa T, Vosshall LB (2009) Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 19:284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K (2012) Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One 7:e32372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namiki S, Iwabuchi S, Kanzaki R (2008) Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A 194:501–515

    Article  CAS  Google Scholar 

  • Nardella J, Terrado M, Honson NS, Plettner E (2015) Endogenous fatty acids in olfactory hairs influence pheromone binding protein structure and function in Lymantria dispar. Arch Biochem Biophys 579:73–84

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt BF, Beevor PS, Hall DR, Lester R, Dyck VA (1975) Identification of female sex phermones of moth, Chilo suppresalis. J Insect Physiol 21:1883–1886

    Article  CAS  Google Scholar 

  • Nesbitt BF, Beevor PS, Hall DR, Lester R (1979) Female sex pheromone components of the cotton bollworm, Heliothis armigera. J Insect Physiol 25:535–541

    Article  CAS  Google Scholar 

  • Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Stortkuhl K, Hatt H (2005) Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 8:15–17

    Article  CAS  PubMed  Google Scholar 

  • Ochieng SA, Park KC, Baker TC (2002) Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A 188:325–333

    Article  CAS  Google Scholar 

  • Opler P (1994) Peterson first guide to butterflies and moths. Houghton Mifflin Harcourt, Boston, p 123

    Google Scholar 

  • Paduraru PM, Nair R, Popoff RTW, Gries R, Gries G, Plettner E (2008) Synthesis of substituted alkoxy benzene minilibraries, for the discovery of new insect olfaction of gustation inhibitors. J Comb Chem 10:123–134

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF (2003) Evolution and biochemistry of OBP and CSP proteins. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology-the biosynthesis and detection of pheromones and plant volatiles. Elsevier Academic Press, SanDiego/London, pp 385–431

    Google Scholar 

  • Picimbon JF, Gadenne C (2002) Evolution of noctuid Pheromone Binding Proteins: identification of PBP in the black cutworm moth, Agrotis ipsilon. Insect Biochem Mol Biol 32:839–846

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Gadenne C, Bécard JM, Clément JL, Sreng L (1997) Sex pheromone of the French black cutworm moth, Agrotis ipsilon (Lepidoptera: Noctuidae): identication and regulation of a multicomponent blend. J Chem Ecol 23:211–230

    Article  CAS  Google Scholar 

  • Plettner E (2002) Insect pheromone olfaction: new targets for the design of species-selective pest control agents. Curr Med Chem 9:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Plettner E, Gries R (2010) Agonists and antagonists of antennal responses of gypsy moth (Lymantria dispar) to the pheromone (+)-disparlure and other odorants. J Agric Food Chem 58:3708–3719

    Article  CAS  PubMed  Google Scholar 

  • Plettner E, Lazar J, Prestwich EG, Prestwich GD (2000) Discrimination of pheromone enantiomers by two Pheromone Binding Proteins from the gypsy moth Lymantria dispar. Biochemistry 39:8953–8962

    Article  CAS  PubMed  Google Scholar 

  • Poivet E, Rharrabe K, Monsempes C, Glaser N, Rochat D, Renou M, Marion-Poll F, Jacquin-Joly E (2012) The use of the sex pheromone as an evolutionary solution to food source selection in caterpillars. Nat Commun 3:1047

    Article  CAS  PubMed  Google Scholar 

  • Pophof B (2002) Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89:515–518

    Article  CAS  PubMed  Google Scholar 

  • Pophof B (2004) Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea poyphemus and Bombyx mori. Chem Senses 29:117–125

    Article  CAS  PubMed  Google Scholar 

  • Pregitzer P, Greschista M, Breer H, Krieger J (2014) The sensory neuron membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system. Insect Mol Biol 23:733–742

    Article  CAS  PubMed  Google Scholar 

  • Raina AK, Kingan TG, Mattoo AK (1992) Chemical signals from host plant and sexual behavior in a moth. Science 255:592–594

    Article  CAS  PubMed  Google Scholar 

  • Rajapakse CNK, Walter GH, Moore CJ, Hull CD, Cribb BW (2006) Host recognition by a polyphagous lepidopteran (Helicoverpa armigera): primary host plants, host produced bolatiles and neurosensory stimulation. Physiol Entomol 31:270–277

    Article  CAS  Google Scholar 

  • Reddy GVP, Guerrero A (2004) Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci 9:253–261

    Article  CAS  PubMed  Google Scholar 

  • Reimer S, Van Klei C, Yu Y, Plettner E, Weinberg N (2011) Partition coefficients of disparlure at hydrophobic/aqueous interfaces: a comparative experimental and theoretical study. Can J Chem 89:568–572

    Article  CAS  Google Scholar 

  • Roelofs WL, Hill AS, Linn CE, Meinwald J, Jain SC, Herbert HJ, Smith RF (1982) Sex pheromone of the winter moth, a geometrid with unusually low-temperature pre-copulatory responses. Science 217:657–659

    Article  CAS  PubMed  Google Scholar 

  • Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the family of membrane proteins. J Biol Chem 272:14792–14799

    Article  CAS  PubMed  Google Scholar 

  • Røstelien T, Stranden M, Borg-Karlson AK, Mustaparta H (2005) Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem Senses 30:443–461

    Article  CAS  PubMed  Google Scholar 

  • Ryan MF (2002) The chemoreceptive organs: structural aspects. In: Ryan MF (ed) Insect chemoreception: fundamental and applied. Springer, Dordrecht, pp 113–139

    Google Scholar 

  • Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T (2004) Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A 101:16653–16658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai T, Mitsuno H, Mikami A, Uchino K, Tabuchi M, Zhang F, Sezutsu H, Kanzaki R (2015) Targeted disruption of a single sex pheromone receptor gene completely abolishes in vivo pheromone response in the silkmoth. Sci Rep 5:11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandler BH, Nikonova L, Leal WS, Clardy J (2000) Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem Biol 7:143–151

    Article  CAS  PubMed  Google Scholar 

  • Sanes J, Hildebrand JG (1976) Structure and development of antennae in a moth, Manduca sexta. Dev Biol 51:282–299

    Article  Google Scholar 

  • Sanes JT, Plettner E (2016) Gypsy moth pheromone-binding protein-ligand interactions: pH profiles and simulations as tools for detecting polar interactions. Arch Biochem Biophys 606:53–63

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1007

    Article  CAS  PubMed  Google Scholar 

  • Schneider D (1964) Insect antennae. Annu Rev Entomol 9:103–122

    Article  Google Scholar 

  • Schneider D (1969) Insect olfaction: deciphering system for chemical messages. Science 163:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Silbering AF, Benton R (2010) Ionotropic and metabotropic mechanisms in chemoreception: ‘chance or design’? EMBO Rep 11:173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solari P, Cerboneschi A, Masala C, Crnjar R, Liscia A (2002) Chemoreception in larvae of the moth Lymantria dispar. Ital J Zool 69:305–312

    Article  CAS  Google Scholar 

  • Song YQ, Sun HZ, Wu JX (2014) Morphology of the sensilla of larval antennae and mouthparts of the oriental fruit moth, Grapholita molesta. B Insectol 67:193–198

    Google Scholar 

  • Starratt AN, Dahm KH, Allen N, Hildebrand JG, Payne TL, Roller H (1979) Bombykal, a sex pheromone of the sphinx moth, Manduca sexta. Z Naturforsch 34:9–12

    Article  Google Scholar 

  • Steinbrecht RA (1996) Structure and function of insect olfactory sensilla. CIBA Found Symp 200:158–177

    CAS  PubMed  Google Scholar 

  • Steinbrecht RA, Laue M, Ziegelberger G (1995) Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell Tissue Res 282:203–217

    Article  CAS  Google Scholar 

  • Steinwender B, Thrimawithana AH, Crowhurst R, Newcomb RD (2016) Odorant receptors of the New Zealand endemic leafroller moth species Planotortrix octo and P. excessana. PLoS One 11:e0152147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stengl M, Funk NW (2013) The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A 199:897–909

    Article  CAS  Google Scholar 

  • Sugie H, Tamaki Y, Sato R, Kumakura M (1984) Sex pheromone of the peach leafminer moth, Lyonetia clerkella: isolation and identification. Appl Entomol Zool 19:323–330

    Article  CAS  Google Scholar 

  • Sun M, Liu Y, Walker WB, Liu C, Lin K, Gu S, Zhang Y, Zhou J, Wang G (2013) Identification and characterization of pheromone receptors and interplay between receptors and pheromone binding proteins in the diamondback moth, Plutella xyllostella. PLoS One 8:e62098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki Y, Kawasaki K, Yamada H, Koshihara T, Osaki N, Ando T, Yoshida S, Kakinohana H (1977) Z-ll-hexadecenal and Z-l 1-hexadecenayl acetate: sex pheromone components of the diamondback moth (Lepidoptera: Plutellidae). Appl Entomol Zool 12:208–210

    Article  CAS  Google Scholar 

  • Tang QB, Hong ZZ, Cao H, Yan FM, Zhao XC (2015) Characteristics of morphology, electrophysiology, and central projections of two sensilla styloconica in Helicoverpa assulta larvae. Neuroreport 26:703–711

    Article  PubMed  Google Scholar 

  • Tatsuki S, Kurihara M, Usui K, Ohguchi Y, Uchiumi K, Fukami J, Arai K, Yabuki S, Tanaka F (1983) Sex-pheromone of the rice stem borer Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), the 3rd component. Z-9-hex-adecenal. Appl Entomol Zool 18:443–446

    Article  CAS  Google Scholar 

  • Terrado M, Yu Y, Plettner E (2018) Correlation of pheromone-binding protein-ligand equilibrium dissociation constants with electroantennogram response patterns. Can J Chem 96:168–177

    Article  CAS  Google Scholar 

  • Tian Z, Liu J, Zhang Y (2016) Structural insights into Cydia pomonella pheromone binding protein 2 mediated prediction of potentiallly active semiochemicals. Sci Rep 6:22336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth M, Buser HR, Pena A, Arn H, Mori K, Takeuchi T, Nikolaeve LN, Kovalev BG (1989) Identification of (3Z,6Z)-1,3,6-9,10-epoxyhenicosatriene and (3Z,6Z)-1,3,6- 9,10-epoxycosatriene in the sex pheromone of Hyphantria cunea. Tetrahedron Lett 30:3405–3408

    Article  CAS  Google Scholar 

  • Tumlinson JH, Hendricks PE, Mitchell ER, Doolittle RE, Brennan MM (1975) Isolation, identification and synthesis of the sex pheromone of the tobacco budworm. J Chem Ecol 1:203–214

    Article  CAS  Google Scholar 

  • Tumlinson JH, Brennan MM, Doolittle RE, Mitchell ER, Brabham A, Mazomenos BE, Baumhover AH, Jackson DM (1989) Identification of a pheromone blend attractive to Manduca sexta (L.) males in a wind tunnel. Arch Insect Biochem Physiol 10:255–271

    Article  CAS  Google Scholar 

  • Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293:161–163

    Article  CAS  PubMed  Google Scholar 

  • Vogt RG, Köhne AC, Dubnau JT, Prestwich GD (1989) Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci 9:3332–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Rybczynski R, Lerner MR (1991) Molecular cloning and sequencing of General Odorant Binding Protein GOBP1 and GOBP2 from tobacco hawk moth, Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci 11:2972–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt RG, Rogers ME, Franco MD, Sun M (2002) A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J Exp Biol 205:719–744

    CAS  PubMed  Google Scholar 

  • Vogt RG, Große-Wilde E, Zhou JJ (2015) The lepidoptera odorant binding protein gene family: gene and loss within the GOBP/PBP complex of moths and butterflies. Insect Biochem Mol Biol 62:142–153

    Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736

    Article  CAS  PubMed  Google Scholar 

  • Wakamura S, Arakaki N, Yamamoto M, Hiradate S, Yasui H, Yasuda T, Ando T (2001) Posticlure: a novel trans-epoxide as a sex pheromone component of the tussock moth, Orgyia postica (Walker). Tetrahedron Lett 42:687–689

    Article  CAS  Google Scholar 

  • Wang HL, Svensson GP, Jakobsson J, Jirle EV, Rosenberg O, Francke W, Anderbrant O, Millar JG, Löfstedt C (2014) Sex pheromone of the cloaked pug moth, Eupithecia abietaria (Lepidoptera: Geometridae), a pest of spruce cones. J Appl Entomol 139:352–360

    Article  CAS  Google Scholar 

  • Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS (2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Xu W, Rayo J, Ishida Y, Leal WS, Ames JB (2010) NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection. Biochemistry 49:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF (2014) Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 9:e86932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan N, Rajashekar B, Kasvandik S, Picimbon JF (2016) Structural components of chemosensory protein mutations in the silkworm moth, Bombyx mori. Agri Gene 2:53–58

    Article  Google Scholar 

  • Yamamoto M, Kamata T, Do ND, Adachi Y, Kinjo M, Ando T (2007) A novel lepidopteran sex pheromone produced by females of a Lithosiinae species, Lyclene dharma dharma, in the family of Arctiidae. Biosci Biotechnol Biochem 71:2860–2863

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Ozaki K, Ishikawa Y, Matsuo T (2015) Identification of candidate odorant receptors in Asian corn borer Ostrinia furnacalis. PLoS One 10:e0121261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Plettner E (2013) Enantiomer and conformer recognition of (+) and (−)-disparlure and their analogs by the pheromone binding proteins of the gypsy moth, Lymantria dispar. Bioorg Med Chem 21:1811–1822

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Ma F, Cao Y, Zhang J, Zhang Y, Duan S, Wei Y, Zhu S, Chen N (2012) Structural and functional difference of pheromone binding proteins in discriminating chemicals in the gypsy moth, Lymantria dispar. Int J Biol Sci 8:979–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu CC, Yan SW, Liu Y, Guo MB, Dong SL, Wang GR (2013) An odorant receptor from the common cutworm (Spodoptera litura) exlusively tuned to the important plant volatile cis-3-Hexenyl acetate. Insect Mol Biol 22:424–432

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Salcedo C, Fang YL, Zhang RJ, Zhang ZN (2012) An overlooked component: (Z)-9-tetradecenal as a sex pheromone in Helicoverpa armigera. J Insect Physiol 58:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Zhang YN, Zhang J, Yan SW, Chang HT, Liu Y, Wang GR, Dong SL (2014) Functional characterization of sex pheromone receptors in the purple stem borer, Sesamia inferens (Walker). Insect Mol Biol 23:611–620

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Y, Walker WB, Dong SL, Wang GR (2015) Identification and localization of two sensory neuron membrane proteins from Spodoptera litura. Insect Sci 22:399–408

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Wang H, Schultze A, Froß H, Francke W, Krieger J, Löfstedt C (2016) Receptor for detection of a type II sex pheromone in the winter moth Operophtera brumata. Sci Rep 6:18576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhang N, Wang P, Zhang S, Li D, Liu K, Wang G, Wang X, Ai H (2015) Identification of host-plant volatiles and characterization of two novel general odorant-binding proteins from the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae). PLoS One 10:e0141208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Plettner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terrado, M., Pinnelli, G.R., Sanes, J., Plettner, E. (2019). Binding Interactions, Structure-Activity Relationships and Blend Effects in Pheromone and Host Olfactory Detection of Herbivorous Lepidoptera. In: Picimbon, JF. (eds) Olfactory Concepts of Insect Control - Alternative to insecticides. Springer, Cham. https://doi.org/10.1007/978-3-030-05165-5_11

Download citation

Publish with us

Policies and ethics