Skip to main content

Microparticle-Supported Nanocomposites for Safe Environmental Applications

  • Chapter
  • First Online:

Abstract

Utilization of nanotechnology and nanomaterials is an integral part of modern life. The increased use of nanomaterials in various consumer products, industries, medical instruments, and information technology and energy sectors has created research interest because of their potential toxicity for the environment . Nanomaterials can also be added directly and indirectly to the soil and water treatment plants to reduce pollutant concentrations. Nanoparticles may enter the aquatic system through runoff and industrial effluent discharge, therefore, potentially contaminate both the aquatic and terrestrial systems. Researchers have used laboratory experiments to understand the effect of nanomaterials and their transformation in water and soil environment. The transformation of nanoparticles in the environment involves various physical and chemical processes, and their degradation/transformation products may introduce further toxicity. Various microparticles or host materials can be used to support or coat nanoparticles in order to reduce their toxicity. Microparticles including clay minerals, polymer , carbon -based materials (biochar ) are popular to support nanoparticles due to their large surface area and improved functional characteristics. This chapter aims to give an overview of the risks associated with using nanoparticles , and how to reduce the possible toxicity related to nanoparticles by using microparticle host materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    Article  CAS  Google Scholar 

  • Bhat AH, Rehman WU, Khan IU, Khna I, Ahmad S, Ayoub M, Usmani MA (2018) Nanocomposite membrane for environmental remediation. In: Jawaid M, Khan MM (eds) Polymer-based nanocomposites for energy and environmental applications. Woodhead Publishing, Cambridge, MA, pp 407–440

    Chapter  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • British Standards (BSI) (2007). Terminology for nanomaterials. Public Available Specification No. 1362007. British Standards Institution, London, 16

    Google Scholar 

  • Cai X, Lee A, Ji Z, Huang C, Chang CH, Wang X, Liao YP, Xia T, Li R (2017) Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Part Fibre Toxicol 14:13

    Article  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  • Cho HH, Lee T, Hwang SJ, Park JW (2005) Iron and organo-bentonite for the reduction and sorption of trichloroethylene. Chemosphere 58:103–108

    Article  CAS  Google Scholar 

  • Churchman GJ, Gates WP, Theng BKG, Yuan G (2006) Clays and clay minerals for pollution control. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science. Elsevier, New York, pp 625–675

    Google Scholar 

  • Clough TJ, Condron LM (2010) Biochar and the nitrogen cycle: introduction. J Environ Qual 39:1218–1223

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166

    Article  CAS  Google Scholar 

  • Conti JA, Killpack K, Gerritzen G, Huang L, Mircheva M, Delmas M, Harthorn BH, Appelbaum RP, Holden PA (2008) Health and safety practices in the nanomaterials workplace: results from an international survey. Environ Sci Technol 42:3155–3162

    Article  CAS  Google Scholar 

  • Duan L, Palanisami T, Liu Y, Dong Z, Mallavarapu M, Kuchel T, Semple KT, Naidu R (2014) Effects of ageing and soil properties on the oral bioavailability of benzo[a]pyrene using a swine model. Environ Int 70:192–202

    Article  CAS  Google Scholar 

  • Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, PS Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490

    Article  CAS  Google Scholar 

  • Hansen BØ, Kwan P, Benjamin MM, Li CW, Korshin GV (2001) Use of iron oxide-coated sand to remove strontium from simulated hanford tank wastes. Environ Sci Technol 35:4905–4909

    Article  CAS  Google Scholar 

  • Hirano M, Ota K, Iwata H (2004) Direct formation of anatase (TiO2)/silica (SiO2) composite Nanoparticles with high phase stability of 1300 °C from acidic solution by hydrolysis under hydrothermal condition. Chem Mater 16:3725–3732

    Article  CAS  Google Scholar 

  • Hoyt VW, Mason E (2008) Nanotechnology: emerging health issues. J Chem Health Safety 15:10–15

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bio Resources 3:929–980

    Google Scholar 

  • Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X (2015) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Env Sci Technol 46:406–433

    Article  Google Scholar 

  • Jiang C, Markutsya S, Pikus Y, Tsukruk VV (2004) Freely suspended nanocomposite membranes as highly sensitive sensors. Nat Mater 3:721

    Article  CAS  Google Scholar 

  • Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L, Zhang Q (2011) Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res 45:2191–2198

    Article  CAS  Google Scholar 

  • Joseph S, Lehmann J (2009) Biochar for environmental management: science and technology. Earthscan Pub., London

    Google Scholar 

  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36:5141–5155

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41:990–1000

    Article  CAS  Google Scholar 

  • Kumar A, Jakhmola A (2007) RNA-mediated fluorescent Q-PbS nanoparticles. Langmuir 23:2915–2918

    Article  CAS  Google Scholar 

  • Kunhikrishnan A, Shon HK, Bolan NS, El Saliby I, Vigneswaran S (2015) Sources, distribution, environmental fate, and ecological effects of nanomaterials in wastewater streams. Crit Rev Env Sci Technol 45:277–318

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  CAS  Google Scholar 

  • Lead JR, Batley GE, Alvarez PJJ, Marie-Noële Croteau, Handy RD, McLaughlin MJ, Judy JD, Schirmer K (2018) Nanomaterials in the environment: behavior, fate, bioavailability, and effects: an updated review. Environ Toxicol Chem 37:2029–2063

    Article  CAS  Google Scholar 

  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota: a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Lin CJ, Lo SL, Liou YH (2005) Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. Chemosphere 59:1299–1307

    Article  CAS  Google Scholar 

  • Mandal S, Sarkar B, Bolan N, Ok YS, Naidu R (2016) Enhancement of chromate reduction in soils by surface modified biochar. J Environ Manage 186:277–284

    Article  Google Scholar 

  • Marti E, Variatza E, Balcazar JL (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22:36–41

    Article  CAS  Google Scholar 

  • Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45:9473–9483

    Article  CAS  Google Scholar 

  • Mian MM, Liu G (2018) Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Adv 8:14237–14248

    Article  CAS  Google Scholar 

  • Ngomsik AF, Bee A, Siaugue JM, Talbot D, Cabuil V, Cote G (2009) Co(II) removal by magnetic alginate beads containing Cyanex 272®. J Hazard Mater 166:1043–1049

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15

    Article  CAS  Google Scholar 

  • Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27

    Article  CAS  Google Scholar 

  • Ram MK, Yavuz Ö, Lahsangah V, Aldissi M (2005) CO gas sensing from ultrathin nano-composite conducting polymer film. Sens Actuators, B 106:750–757

    Article  CAS  Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C 27:1–35

    Article  CAS  Google Scholar 

  • Rocher V, Siaugue JM, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42:1290–1298

    Article  CAS  Google Scholar 

  • Rusmin R, Sarkar B, Tsuzuki T, Kawashima N, Naidu R (2017) Removal of lead from aqueous solution using superparamagnetic palygorskite nanocomposite: material characterization and regeneration studies. Chemosphere 186:1006–1015

    Article  CAS  Google Scholar 

  • Samrot A, Bhavya KS, Sahithya CS, Sowmya N (2018) Evaluation of toxicity of chemically synthesised gold nanoparticles against Eudrilus eugeniae. J Clust Sci https://doi.org/10.1007/s10876-018-1440-0

    Article  CAS  Google Scholar 

  • Sarkar B, Liu E, McClure S, Sundaramurthy J, Srinivasan M, Naidu R (2015) Biomass derived palygorskite–carbon nanocomposites: synthesis, characterisation and affinity to dye compounds. Appl Clay Sci 114:617–626

    Article  CAS  Google Scholar 

  • Sarkar B, Xi Y, Megharaj M, Krishnamurti GSR, Bowman M, Rose H, Naidu R (2012) Bioreactive organoclay: a new technology for environmental remediation. Crit Rev Env Sci Technol 42:435–488

    Article  CAS  Google Scholar 

  • Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165:803–810

    Article  CAS  Google Scholar 

  • Shatkin JA (2017) Nanotechnology: health and environmental risks, 2nd ed. CRC Press Taylor & Francis Pub., London

    Book  Google Scholar 

  • Shi L, Lin YM, Zhang X, Chen Z (2011) Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution. Chem Eng J 171:612–617

    Article  CAS  Google Scholar 

  • Shichi T, Takagi K (2000) Clay minerals as photochemical reaction fields. J Photoch Photobio C 1:113–130

    Article  CAS  Google Scholar 

  • Sohi SP (2012) Carbon storage with benefits. Science 338:1034–1035

    Article  CAS  Google Scholar 

  • Son YH, Lee JK, Soong Y, Martello D, Chyu MK (2012) Heterostructured zero valent iron–montmorillonite nanohybrid and their catalytic efficacy. Appl Clay Sci 62–63:21–26

    Article  Google Scholar 

  • Stahlhofen WG, Rudlof G, James AC (1989) Intercomparison of experimental regional aerosol deposition data. J Aerosol Med 2:285–308

    Article  Google Scholar 

  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, Handy R, Hankin S, Hassellöv M, Joner E, Fernandes TF (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333

    Article  CAS  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  Google Scholar 

  • Vaughan RL, Reed BE (2005) Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Res 39:1005–1014

    Article  CAS  Google Scholar 

  • Wang MC, Sheng GD, Qiu YP (2014) A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions. Int J Environ Sci Technol 12:1719–1726

    Article  Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL, Hochella JMF, Di Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462

    Article  CAS  Google Scholar 

  • Xi Y, Megharaj M, Naidu R (2011) Dispersion of zerovalent iron nanoparticles onto bentonites and use of these catalysts for orange II decolourisation. Appl Clay Sci 53:716–722

    Article  CAS  Google Scholar 

  • Xiaoying W, Yumin D, Jiwen L (2008) Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology 19:1–7

    Google Scholar 

  • Yew SP, Tang HY, Sudesh K (2006) Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polym Degrad Stab 91:1800–1807

    Article  CAS  Google Scholar 

  • Zekic E, Vukovic Z, Halkijevic I (2018) Application of nanotechnology in wastewater treatment. Gradevinar 70:315–323

    Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012a) Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem Eng J 210:26–32

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Yao Y, Xue Y, Inyang M (2012b) Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci Total Environ 435–436:567–572

    Article  Google Scholar 

  • Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012c) Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249

    Article  Google Scholar 

  • Zhang D, Li Y, Tong S, Jiang X, Wang L, Sun X, Li J, Liu X, Shen J (2018) Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene. RSC Adv 8:22161–22168

    Article  CAS  Google Scholar 

  • Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  CAS  Google Scholar 

  • Zhou Y, Gao B, Zimmerman AR, Fang J, Sun Y, Cao X (2013) Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem Eng J 231:512–518

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binoy Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandal, S., Sarkar, B., Mukhopadhyay, R., Biswas, J.K., Manjaiah, K.M. (2018). Microparticle-Supported Nanocomposites for Safe Environmental Applications. In: Rai, M., Biswas, J. (eds) Nanomaterials: Ecotoxicity, Safety, and Public Perception. Springer, Cham. https://doi.org/10.1007/978-3-030-05144-0_15

Download citation

Publish with us

Policies and ethics