Skip to main content

A Review on Ecotoxicity of Zinc Oxide Nanoparticles on Freshwater Algae

  • Chapter
  • First Online:
Nanomaterials: Ecotoxicity, Safety, and Public Perception

Abstract

The steady increase in use of ZnO nanoparticles (NPs) based consumer products possess high risk towards aquatic flora and fauna. Understanding the toxicity mechanism of ZnO NPs at an early stage is essential to develop a proper scientific design in innovation process to confine the exposure of nanoparticles at safer levels. Being the primary producers of aquatic food chain, various algal species were used as model organisms in several toxicological studies. This chapter summarizes the aspects that include environmental release, behaviour, dissolution, particle size, morphology, irradiation, reactive oxygen species generation, penetration/internalization of ZnO NPs on various algal species. Dissolved Zn ion toxicity was the major toxicity mechanism exhibited by ZnO NPs towards most of the algal species tested. Additionally, photocatalytic activity of ZnO NPs under UV irradiation also significantly increased the toxicity. To conclude, knowledge gaps and future research needs on the usage, discharge and its eco-toxicological effects of ZnO NPs were addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NPs:

Nanoparticles

ZnO :

Zinc Oxide

SEM:

Scanning Electron Microscopy

TEM:

Transmission Electron Microscopy

ROS :

Reactive Oxygen Species

LDH :

Lactate Dehydrogenase

SOD :

Superoxide Dismutase

GSH:

Reduced Glutathione

UV:

Ultra Violet

EC50:

Effective Concentration

References

  • Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261:3–18

    Article  CAS  Google Scholar 

  • Aravantinou AF, Andreou F, Manariotis ID (2017) Long-term toxicity of ZnO nanoparticles to Scenedesmus rubescens cultivated in different media. Sci Rep 7:13454

    Article  Google Scholar 

  • Aravantinou AF, Tsarpali V, Dailianis S, Manariotis ID (2015) Effect of cultivation media on the toxicity of ZnO nanoparticles to freshwater and marine microalgae. Ecotoxicol Environ Saf 114:109–116

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  • Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A (2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 2:630–644

    Article  CAS  Google Scholar 

  • Bacchetta R, Maran B, Marelli M, Santo N, Tremolada P (2016) Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: a morphological approach. Environ Res 148:376–385

    Article  CAS  Google Scholar 

  • Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. Biomed Res Int 2013:647974

    Article  Google Scholar 

  • Behra R et al (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interf 10:20130396

    Article  Google Scholar 

  • Bhuvaneshwari M et al (2015) Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat Toxicol 162:29–38

    Article  CAS  Google Scholar 

  • Bhuvaneshwari M, Iswarya V, Nagarajan R, Chandrasekaran N, Mukherjee A (2016) Acute toxicity and accumulation of ZnO NPs in Ceriodaphnia dubia: relative contributions of dissolved ions and particles. Aquat Toxicol 177:494–502

    Article  CAS  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  CAS  Google Scholar 

  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  CAS  Google Scholar 

  • Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  Google Scholar 

  • Chen P, Powell BA, Mortimer M, Ke PC (2012) Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ Sci Technol 46:12178–12185

    Article  CAS  Google Scholar 

  • DÄ…browski A (2001) Adsorption—from theory to practice. Adv Colloid Interf Sci 93:135–224

    Article  Google Scholar 

  • Dabrunz A et al (2011) Biological surface coating and molting inhibition as mechanisms of TiO2 nanoparticle toxicity in Daphnia magna. PLoS ONE 6:e20112

    Article  CAS  Google Scholar 

  • Deng Z, Chen M, Gu G, Wu L (2008) A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J Phys Chem B 112:16–22

    Article  CAS  Google Scholar 

  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gunawan C, Sirimanoonphan A, Teoh WY, Marquis CP, Amal R (2013) Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. J Hazard Mater 260:984–992

    Article  CAS  Google Scholar 

  • Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    Article  CAS  Google Scholar 

  • Han J, Qiu W, Gao W (2010) Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater 178:115–122

    Article  CAS  Google Scholar 

  • Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res Int 23:2821–2830

    Article  CAS  Google Scholar 

  • Izu N, Shimada K, Akamatsu T, Itoh T, Shin W, Shiraishi K, Usui T (2014) Polyol synthesis of Al-doped ZnO spherical nanoparticles and their UV–vis–NIR absorption properties. Ceram Int 40:8775–8781

    Article  CAS  Google Scholar 

  • Jahan S, Yusoff IB, Alias YB, Bakar A (2017) Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicol Rep 4:211–220

    Article  CAS  Google Scholar 

  • Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530

    Article  CAS  Google Scholar 

  • Kamat PV, Meisel D (2002) Nanoparticles in advanced oxidation processes. Curr Opin Colloid Interf Sci 7:282–287

    Article  CAS  Google Scholar 

  • Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. C R Chim 6:999–1007

    Article  CAS  Google Scholar 

  • Keller AA et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    Article  CAS  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: Properties, applications and toxicities. Arab J Chem

    Google Scholar 

  • Kim SW, An YJ (2012) Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 95:243–253

    Article  CAS  Google Scholar 

  • Klaine SJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Krishnakumar T, Jayaprakash R, Pinna N, Singh V, Mehta B, Phani A (2009) Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures. Mater Lett 63:242–245

    Article  CAS  Google Scholar 

  • Lee WM, An YJ (2013) Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere 91:536–544

    Article  CAS  Google Scholar 

  • Lee Y, Lee J, Bae CJ, Park JG, Noh HJ, Park JH, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509

    Article  CAS  Google Scholar 

  • Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles. Nanoscale 7:3396–3403

    Article  CAS  Google Scholar 

  • Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445–446:371–376

    Article  Google Scholar 

  • Merdzan V, Domingos RF, Monteiro CE, Hadioui M, Wilkinson KJ (2014) The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga. C reinhardtii Sci Total Environ 488–489:316–324

    Article  Google Scholar 

  • Miao AJ, Zhang XY, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton. Environ Toxicol Chem 29:2814–2822

    Article  CAS  Google Scholar 

  • Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44:7329–7334

    Article  CAS  Google Scholar 

  • Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  Google Scholar 

  • Panessa-Warren BJ, Maye MM, Warren JB, Crosson KM (2009) Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environ Pollut 157:1140–1151

    Article  CAS  Google Scholar 

  • Pathakoti K, Morrow S, Han C, Pelaez M, He X, Dionysiou DD, Hwang HM (2013) Photoinactivation of Escherichia coli by sulfur-doped and nitrogen-fluorine-codoped TiO2 nanoparticles under solar simulated light and visible light irradiation. Environ Sci Technol 47:9988–9996

    Article  CAS  Google Scholar 

  • Peng C et al (2017) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials (Basel) 7:21

    Article  Google Scholar 

  • Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109–1120

    Article  Google Scholar 

  • Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interf Sci 162:87–106

    Article  CAS  Google Scholar 

  • Rajavel K, Gomathi R, Manian S, Rajendra Kumar RT (2014) In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 30:592–601

    Article  CAS  Google Scholar 

  • Rsrae N (2004) Nanotechnologies: opportunities and uncertainties RS policy document 19/04’. The Royal Society and Royal Academy of Engineering, London

    Google Scholar 

  • Sapkal RT, Shinde SS, Waghmode TR, Govindwar SP, Rajpure KY, Bhosale CH (2012) Photo-corrosion inhibition and photoactivity enhancement with tailored zinc oxide thin films. J Photochem Photobiol B 110:15–21

    Article  CAS  Google Scholar 

  • Scown TM et al (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115:521–534

    Article  CAS  Google Scholar 

  • Snyder-Talkington BN, Qian Y, Castranova V, Guo NL (2012) New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics. J Toxicol Environ Health B Crit Rev 15:468–492

    Article  CAS  Google Scholar 

  • Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397

    Article  CAS  Google Scholar 

  • Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30

    Article  CAS  Google Scholar 

  • Toensmeier PA (2004) Nanotechnology faces scrutiny over environment and toxicity. Plast Eng 60:14–14

    CAS  Google Scholar 

  • Tseng YH, Lin HY, Kuo CS, Li YY, Huang CP (2006) Thermostability of Nano-TiO2 and its photocatalytic activity. React Kinet Catal Lett 89:63–69

    Article  CAS  Google Scholar 

  • Tsukazaki A et al (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46

    Article  CAS  Google Scholar 

  • Walters CR, Pool E, Somerset V (2016) Nanotoxicology: a review. In: Toxicology—new aspects to this scientific conundrum. InTech, pp 45–63

    Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  Google Scholar 

  • Wang X et al (2016) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    PubMed  PubMed Central  Google Scholar 

  • Wong SW, Leung PT, Djurisic AB, Leung KM (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618

    Article  CAS  Google Scholar 

  • Wu F, Bortvedt A, Harper BJ, Crandon LE, Harper SL (2017) Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Aquat Toxicol 190:78–86

    Article  CAS  Google Scholar 

  • Xia T et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  • Zhang C, Chen X, Wang J, Tan L (2018) Toxicity of zinc oxide nanoparticles on marine microalgae possessing different shapes and surface structures. Environ Eng Ecol Sci 35–8:785–790

    Article  Google Scholar 

  • Zhou H, Wang X, Zhou Y, Yao H, Ahmad F (2014) Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Anal Bioanal Chem 406:3689–3695

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhuvaneshwari, M., Iswarya, V., Chandrasekaran, N., Mukherjee, A. (2018). A Review on Ecotoxicity of Zinc Oxide Nanoparticles on Freshwater Algae. In: Rai, M., Biswas, J. (eds) Nanomaterials: Ecotoxicity, Safety, and Public Perception. Springer, Cham. https://doi.org/10.1007/978-3-030-05144-0_10

Download citation

Publish with us

Policies and ethics