Skip to main content

Partition Algebras and the Invariant Theory of the Symmetric Group

  • Chapter
  • First Online:
Recent Trends in Algebraic Combinatorics

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 16))

Abstract

The symmetric group \(\mathsf {S}_n\) and the partition algebra \(\mathsf {P}_k(n)\) centralize one another in their actions on the k-fold tensor power \(\mathsf {M}_n^{\otimes k}\) of the n-dimensional permutation module \(\mathsf {M}_n\) of \(\mathsf {S}_n\). The duality afforded by the commuting actions determines an algebra homomorphism \(\varPhi _{k,n}: \mathsf {P}_k(n) \rightarrow \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\) from the partition algebra to the centralizer algebra \( \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\), which is a surjection for all  \(k, n \in \mathbb {Z}_{\ge 1}\), and an isomorphism when \(n \ge 2k\).   We present results that can be derived from the duality between \(\mathsf {S}_n\) and \(\mathsf {P}_k(n)\), for example, (i) expressions for the multiplicities of the irreducible \(\mathsf {S}_n\)-summands of \(\mathsf {M}_n^{\otimes k}\), (ii) formulas for the dimensions of the irreducible modules for the centralizer algebra \( \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\), (iii) a bijection between vacillating tableaux and set-partition tableaux, (iv) identities relating Stirling numbers of the second kind and the number of fixed points of permutations, and (v) character values for the partition algebra \(\mathsf {P}_k(n)\). When \(2k >n\), the map \(\varPhi _{k,n}\) has a nontrivial kernel which is generated as a two-sided ideal by a single idempotent. We describe the kernel and image of \(\varPhi _{k,n}\) in terms of the orbit basis of \(\mathsf {P}_k(n)\) and explain how the surjection \(\varPhi _{k,n}\) can also be used to obtain the fundamental theorems of invariant theory for the symmetric group.

The second author gratefully acknowledges partial support from Simons Foundation grant 283311.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Barnes, G. Benkart, T. Halverson, McKay centralizer algebras. Proc. Lond. Math. Soc. 112(2), 375–414 (2016)

    Article  MathSciNet  Google Scholar 

  2. G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras. J. Algebra 166(3), 529–567 (1994)

    Article  MathSciNet  Google Scholar 

  3. G. Benkart, T. Halverson, Partition algebras \({\sf P}_k(n)\) with \(2k>n\) and the fundamental theorems of invariant theory for the symmetric group \({\sf S}_n\), J. Lond. Math. Soc. in press. arXiv:1707.1410

  4. G. Benkart, T. Halverson, N. Harman, Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups. J. Algebraic Combin. 46(1), 77–108 (2017), arXiv:1605.06543

    Article  MathSciNet  Google Scholar 

  5. G. Benkart, D. Moon, Walks on graphs and their connections with tensor invariants and centralizer algebras, J. Algebra 509, 1–39 (2018). arXiv:1610.07837

    Article  MathSciNet  Google Scholar 

  6. C. Bowman, M. DeVisscher, R. Orellana, The partition algebra and the Kronecker coefficients. Discrete Math. Theor. Comput. Sci. Proc. AS 321–332 (2013)

    Google Scholar 

  7. C. Bowman, M. DeVisscher, R. Orellana, The partition algebra and the Kronecker coefficients. Trans. Amer. Math. Soc. 367, 3647–3667 (2015)

    Article  MathSciNet  Google Scholar 

  8. C. Bowman, J. Enyang, and F.W. Goodman, The cellular second fundamental theorem of invariant theory for classical groups, arXiv:1610.09009

  9. R. Brauer, On algebras which are connected with the semisimple continuous groups. Ann. of Math. 38(4), 857–872 (1937)

    Article  MathSciNet  Google Scholar 

  10. W. Chen, E. Deng, R. Du, R. Stanley, C. Yan, Crossings and nestings of matchings and partitions. Trans. Amer. Math. Soc. 359, 1555–1575 (2007)

    Article  MathSciNet  Google Scholar 

  11. J. East, Presentations for (singular) partition monoids: a new approach, in Mathematical Proceedings of the Cambridge Philosophical Society, First View https://doi.org/10.1017/S030500411700069X, Published online: (11 October 2017), pp. 1–14

    Article  MathSciNet  Google Scholar 

  12. J. Enyang, Jucys-Murphy elements and a presentation for partition algebras. J. Algebraic Combin. 37, 401–454 (2013)

    Article  MathSciNet  Google Scholar 

  13. J. Enyang, A seminormal form for partition algebras. J. Combin. Theory Ser. A 120, 1737–1785 (2013)

    Article  MathSciNet  Google Scholar 

  14. J. Farina, T. Halverson, Character orthogonality for the partition algebra and fixed points of permutations. Adv. Appl. Math. 31, 113–131 (2003)

    Article  MathSciNet  Google Scholar 

  15. W. Fulton, J. Harris, Representation Theory, A First Course. Graduate Texts in Mathematics, vol. 129 (Springer, New York, 1991)

    Google Scholar 

  16. R. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups. Encyclopedia of Mathematics and Its Applications, vol. 68 (Cambridge University Press, Cambridge, 1998); 3rd corrected printing, Cambridge University Press (2003)

    Google Scholar 

  17. T. Halverson, Characters of the partition algebras. J. Algebra 238, 502–533 (2001)

    Article  MathSciNet  Google Scholar 

  18. T. Halverson, T. Lewandowski, RSK insertion for set partitions and diagram algebras, Electron. J. Combin. vol. 11, no. 2 (2004/2006), 24 pp (Research Paper 24)

    Google Scholar 

  19. T. Halverson, A. Ram, Partition algebras. European J. Combin. 26, 869–921 (2005)

    Article  MathSciNet  Google Scholar 

  20. J. Hu, Z. Xiao, On tensor spaces for Birman-Murakami-Wenzl algebras. J. Algebra 324, 2893–2922 (2010)

    Article  MathSciNet  Google Scholar 

  21. G. James, A. Kerber, The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications, vol. 16 (Addison-Wesley Publishing Co., Reading, Mass, 1981)

    Google Scholar 

  22. V.F.R. Jones, The Potts model and the symmetric group, in Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993) (World Scientific Publishing, River Edge, NJ, 1994), pp. 259–267

    Google Scholar 

  23. G. Lehrer, R.B. Zhang, The second fundamental theorem of invariant theory for the orthogonal group. Ann. of Math. 176, 2031–2054 (2012)

    Article  MathSciNet  Google Scholar 

  24. G. Lehrer, R.B. Zhang, The Brauer category and invariant theory. J. Eur. Math. Soc. 17, 2311–2351 (2015)

    Article  MathSciNet  Google Scholar 

  25. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Classic Texts in the Physical Sciences (The Clarendon Press, Oxford University Press, New York, 2015)

    Google Scholar 

  26. P. Martin, Representations of graph Temperley-Lieb algebras. Publ. Res. Inst. Math. Sci. 26(3), 485–503 (1990)

    Article  MathSciNet  Google Scholar 

  27. P. Martin, Temperley-Lieb algebras for non-planar statistical mechanics– the partition algebra construction. J. Knot Theory Ramifications 3, 51–82 (1994)

    Article  MathSciNet  Google Scholar 

  28. P. Martin, The structure of the partition algebra. J. Algebra 183, 319–358 (1996)

    Article  MathSciNet  Google Scholar 

  29. P. Martin, G. Rollet, The Potts model representation and a Robinson-Schensted correspondence for the partition algebra. Compositio Math. 112, 237–254 (1998)

    Article  MathSciNet  Google Scholar 

  30. A. Morales, I. Pak, G. Panova, Hook formulas for skew shapes I. q-analogues and bijections. J. Combin. Theory Ser. A 154, 350–405 (2018)

    Article  MathSciNet  Google Scholar 

  31. R. Orellana, M. Zabrocki, Symmetric group characters as symmetric functions, arXiv:1605.06672v3

  32. R. Orellana, M. Zabrocki, Products of characters of the symmetric group, arXiv:1709.08098

  33. M. Rubey, B. Westbury, A combinatorial approach to classical representation theory, arXiv:1408.3592

  34. M. Rubey, B. Westbury, Combinatorics of symplectic invariant tensors, in Proceedings of FPSAC 2015, Discrete Mathematics & Theoretical Computer Science Proceedings of the Association; Discrete Mathematics & Theoretical Computer Science, Nancy (2015), pp. 285–296

    Google Scholar 

  35. B.E. Sagan, The symmetric group. Representations, Combinatorial Algorithms, and Symmetric Functions, 2 edn. Graduate Texts in Mathematics, vol. 203 (Springer, New York, 2001), pp. xvi+238

    Google Scholar 

  36. R.P. Stanley, Enumerative Combinatorics, vol. 1 (Cambridge, England, 1997)

    Google Scholar 

  37. R.P. Stanley, Enumerative Combinatorics, vol. 2 (Cambridge, England, 1999)

    Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a careful proofreading and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Benkart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benkart, G., Halverson, T. (2019). Partition Algebras and the Invariant Theory of the Symmetric Group. In: Barcelo, H., Karaali, G., Orellana, R. (eds) Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-05141-9_1

Download citation

Publish with us

Policies and ethics