Skip to main content

Modelling Interactions Between Active and Passive Agents Moving Through Heterogeneous Environments

  • Chapter
  • First Online:
Crowd Dynamics, Volume 1

Abstract

We study the dynamics of interacting agents from two distinct intermixed populations: one population includes active agents that follow a predetermined velocity field, while the second population contains exclusively passive agents, i.e., agents that have no preferred direction of motion. The orientation of their local velocity is affected by repulsive interactions with the neighboring agents and environment. We present two models that allow for a qualitative analysis of these mixed systems. We show that the residence times of this type of systems containing mixed populations is strongly affected by the interplay between these two populations. After showing our modelling and simulation results, we conclude with a couple of mathematical aspects concerning the well-posedness of our models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we assume that the discomfort is perceptible, known.

References

  1. Adams, R.A., Fournier, J.J.: Sobolev Spaces, vol. 140. Academic Press (2003)

    Google Scholar 

  2. Anh, N.T.N., Daniel, Z.J., Du, N.H., Drogoul, A., An, V.D.: A hybrid macro-micro pedestrians evacuation model to speed up simulation in road networks. In: International Conference on Autonomous Agents and Multiagent Systems, pp. 371–383. Springer (2011)

    Google Scholar 

  3. Bellomo, N., Clarke, D., Gibelli, L., Townsend, P., Vreugdenhil, B.: Human behaviours in evacuation crowd dynamics: from modelling to big data toward crisis management. Physics of Life Reviews 18, 1–21 (2016)

    Article  Google Scholar 

  4. Bellomo, N., Gibelli, L.: Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds. Mathematical Models and Methods in Applied Sciences 25(13), 2417–2437 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bensoussan, A.: Stochastic Navier-Stokes equations. Acta Applicandae Mathematica 38(3), 267–304 (1995)

    Article  MathSciNet  Google Scholar 

  6. Billingsley, P., Dudley, R., et al.: Convergence of probability measures. Bulletin of the American Mathematical Society 77(1), 25–27 (1971)

    Article  MathSciNet  Google Scholar 

  7. Bortz, A., Kalos, M., Lebowitz, J.: A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics 17(1), 10–18 (1975)

    Article  Google Scholar 

  8. Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, vol. 183. Springer Science & Business Media (2012)

    Google Scholar 

  9. Cao, S., Song, W., Liu, X., Mu, N.: Simulation of pedestrian evacuation in a room under fire emergency. Proceeding Engineering 71, 403–409 (2014)

    Article  Google Scholar 

  10. Chu, M.L., Parigi, P., Law, K., Latombe, J.C.: Modeling social behaviors in an evacuation simulator. Computer Animation and Virtual Worlds 25(3–4), 373–382 (2014)

    Article  Google Scholar 

  11. Ciallella, A., Cirillo, E.N.M., Curşeu, P.L., Muntean, A.: Free to move or trapped in your group: Mathematical modeling of information overload and coordination in crowded populations. Mathematical Models and Methods in Applied Sciences M3AS (2018)

    Article  MathSciNet  Google Scholar 

  12. Cirillo, E.N.M., Colangeli, M.: Stationary uphill currents in locally perturbed zero-range processes. Phys. Rev. E 96, 052,137 (2017)

    Article  Google Scholar 

  13. Cirillo, E.N.M., Colangeli, M., Muntean, A.: Blockage-induced condensation controlled by a local reaction. Phys. Rev. E 94, 042,116 (2016)

    Article  Google Scholar 

  14. Colombo, R.M., Lorenz, T., Pogodaev, N.I.: On the modeling of moving populations through set evolution equations. Discrete & Continuous Dynamical Systems - A 35(1), 73–98 (2015)

    Article  MathSciNet  Google Scholar 

  15. Corbetta, A., Bruno, L., Muntean, A., Toschi, F.: High statistics measurements of pedestrian dynamics. Transportation Research Procedia 2, 96–104 (2014)

    Article  Google Scholar 

  16. Cristiani, E., Piccoli, B., Tosin, A.: Multiscale modeling of granular flows with application to crowd dynamics. Multiscale Modeling & Simulation 9(1), 155–182 (2011)

    Article  MathSciNet  Google Scholar 

  17. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Transactions on automatic control 52(5), 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  18. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press (2014)

    Google Scholar 

  19. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lecture notes in mathematics. Springer-Verlag (1991)

    Book  Google Scholar 

  20. Evans, L.: Partial Differential Equations, vol. 19. American Mathematical Society (2010)

    Google Scholar 

  21. Evans, L.: An Introduction to Stochastic Differential Equations, vol. 82. American Mathematical Soc. (2012)

    Google Scholar 

  22. Faure, S., Maury, B.: Crowd motion from the granular standpoint. Mathematical Models and Methods in Applied Sciences 25(03), 463–493 (2015)

    Article  MathSciNet  Google Scholar 

  23. Flandoli, F., Gatarek, D.: Martingale and stationary solutions for stochastic Navier-Stokes equations. Probability Theory and Related Fields 102(3), 367–391 (1995)

    Article  MathSciNet  Google Scholar 

  24. Garcimartín, A., Pastor, J., Ferrer, L., Ramos, J., Martín-Gómez, C., Zuriguel, I.: Flow and clogging of a sheep herd passing through a bottleneck. Physical Review E 91(2), 022,808 (2015)

    Article  Google Scholar 

  25. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487 (2000)

    Article  Google Scholar 

  26. Horiuchi, S., Murozaki, Y., Hukugo, A.: A case study of fire and evacuation in a multi-purpose office building, Osaka, Japan. Fire Safety Science 1, 523–532 (1986)

    Article  Google Scholar 

  27. Hughes, R.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36(6), 507–535 (2002)

    Article  Google Scholar 

  28. Hung, N.M., Vinh, H.T., Jean-Charles, R.: Modeling and simulation of fire evacuation in public buildings. Advances in Computer Science: an International Journal 4(6), 1–7 (2015)

    Google Scholar 

  29. Jacod, J., Protter, P.: Probability Essentials. Springer Science & Business Media (2004)

    Google Scholar 

  30. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg (1998)

    MATH  Google Scholar 

  31. Landau, D., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, New York, NY, USA (2005)

    Book  Google Scholar 

  32. Majmudar, T.S., Sperl, M., Luding, S., Behringer, R.P.: Jamming transition in granular systems. Phys. Rev. Lett. 98, 058,001 (2007)

    Article  Google Scholar 

  33. Meunier, H., Leca, J.B., Deneubourg, J.L., Petit, O.: Group movement decisions in capuchin monkeys: the utility of an experimental study and a mathematical model to explore the relationship between individual and collective behaviours. Behaviour 143(12), 1511–1527 (2006)

    Article  Google Scholar 

  34. Nguyen, M.H., Ho, T.V., Zucker, J.D.: Integration of smoke effect and blind evacuation strategy (sebes) within fire evacuation simulation. Simulation Modelling Practice and Theory 36, 44–59 (2013)

    Article  Google Scholar 

  35. Pankavich, S., Michalowski, N.: A short proof of increased parabolic regularity. Electronic Journal of Differential Equations 205 (2005)

    Google Scholar 

  36. Pavliotis, G.A.: Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations, vol. 60. Springer (2014)

    Google Scholar 

  37. Richardson, O.: Mercurial. https://github.com/0mar/mercurial (2015). Python framework for building, running and post-processing crowd simulations

  38. Richardson, O.: Large-scale multiscale particle models in inhomogeneuous domains: Modelling and implementation. Master’s thesis, Technische Universiteit Eindhoven (2016)

    Google Scholar 

  39. Richardson, O., Jalba, A., A, M.: Effects of environment knowledge in evacuation scenarios involving fire and smoke - a multiscale modelling and simulation approach. ArXiv e-prints (2017). URL https://arxiv.org/pdf/1709.07786.pdf

  40. Ronchi, E., Fridolf, F., Frantzich, H., Nilsson, D., Walter, A.L., Modig, H.: A tunnel evacuation experiment on movement speed and exit choice in smoke. Fire Safety Journal (2017)

    Google Scholar 

  41. Schieborn, D.: Viscosity Solutions of Hamilton-Jacobi Equations of Eikonal Type on Ramified Spaces. Ph.D. thesis, University Tübingen (2006)

    Google Scholar 

  42. Tan, L., Hu, M., Lin, H.: Agent-based simulation of building evacuation: Combining human behavior with predictable spatial accessibility in a fire emergency. Information Sciences 295, 53–66 (2015)

    Article  MathSciNet  Google Scholar 

  43. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Trans. Graph. 25(3), 1160–1168 (2006)

    Article  Google Scholar 

  44. Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella, S., Ogden, A., Rika, I., Sheel, A., et al.: Escapes: evacuation simulation with children, authorities, parents, emotions, and social comparison. In: The 10th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pp. 457–464. International Foundation for Autonomous Agents and Multiagent Systems (2011)

    Google Scholar 

  45. Voter, A.F.: Introduction to the Kinetic Monte Carlo Method. In: K.E. Sickafus, E.A. Kotomin, B.P. Uberuaga (eds.) Radiation Effects in Solids, pp. 1–23. Springer Netherlands, Dordrecht (2007)

    Google Scholar 

  46. Zuriguel, I., Parisi, D.R., Hidalgo, R.C., et al.: Clogging transition of many-particle systems flowing through bottlenecks. Scientific reports 4, 7324 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Richardson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colangeli, M., Muntean, A., Richardson, O., Thieu, T.K.T. (2018). Modelling Interactions Between Active and Passive Agents Moving Through Heterogeneous Environments. In: Gibelli, L., Bellomo, N. (eds) Crowd Dynamics, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-05129-7_8

Download citation

Publish with us

Policies and ethics