Skip to main content

Crowd Dynamics in Virtual Reality

  • Chapter
  • First Online:
Crowd Dynamics, Volume 1

Abstract

Collecting empirical data on crowd dynamics is challenging. The methods available to researchers typically need to compromise between ecological validity and experimental control. The goal of this chapter is to demonstrate that virtual reality (VR) offers a promising solution to the dilemma. The first section of this chapter introduces VR as a research tool and touches on its strengths and weaknesses. The second section covers a range of studies in which VR was used to study crowds, beginning with a discussion of differences between human behavior in real and virtual settings (e.g., walking and social interactions). Using the behavioral dynamics framework as a theoretical foundation, several studies demonstrating that people coordinate dynamically with their neighbors in a crowd are presented, contributing toward a data-driven approach to modeling human crowds. Then, a series of VR studies that cover various aspects of crowd behavior in emergency evacuation scenarios are introduced, covering topics such as evacuation decision-making, way-finding, and exit choice when people evacuate in a crowd. Finally, the third section of this chapter offers an outlook on the road ahead, discussing some of the technical and methodological challenges for VR as a research tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Templeton, J. Drury, and A. Philippides, “From Mindless Masses to Small Groups: Conceptualizing Collective Behavior in Crowd Modeling,” Rev Gen Psychol, vol. 19, pp. 215–229, Sep 2015.

    Article  Google Scholar 

  2. J. Steuer, “Defining Virtual Reality - Dimensions Determining Telepresence,” Journal of Communication, vol. 42, pp. 73–93, Fal 1992.

    Google Scholar 

  3. M. Slater, B. Spanlang, and D. Corominas, “Simulating Virtual Environments within Virtual Environments as the Basis for a Psychophysics of Presence,” Acm Transactions on Graphics, vol. 29, p. 92, Jul 2010.

    Article  Google Scholar 

  4. S. Bazazi, J. Buhl, J. J. Hale, M. L. Anstey, G. A. Sword, S. J. Simpson, et al., “Collective motion and cannibalism in locust migratory bands,” Curr Biol, vol. 18, pp. 735–739, May 20 2008.

    Article  Google Scholar 

  5. E. Ronchi, A. Corbetta, E. Galea, M. Kinateder, E. D. Kuligowski, D. McGrath, et al., “New approaches to evacuation modelling,” in Symposium of the International Association for Fire Safety Science, Lund, Sweden, 2017, pp. 1–78.

    Google Scholar 

  6. W. Barfield and E. Danas, “Comments on the use of olfactory displays for virtual environments,” Presence: Teleoperators and Virtual Environments, vol. 5, pp. 109–121, 1996.

    Article  Google Scholar 

  7. E. Richard, A. Tijou, P. Richard, and J.-L. Ferrier, “Multi-modal virtual environments for education with haptic and olfactory feedback,” Virtual Reality, vol. 10, pp. 207–225, 2006.

    Article  Google Scholar 

  8. F. Hülsmann, N. Mattar, J. Fröhlich, and I. Wachsmuth, “Wind and Warmth in Virtual Reality–Requirements and Chances,” in Proceedings of the Workshop Virtuelle & Erweiterte Realität 2013, 2013.

    Google Scholar 

  9. N. W. Bode, A. U. Kemloh Wagoum, and E. A. Codling, “Human responses to multiple sources of directional information in virtual crowd evacuations,” J R Soc Interface, vol. 11, p. 20130904, Feb 6 2014.

    Article  Google Scholar 

  10. A. Czirok and T. Vicsek, “Collective behavior of interacting self-propelled particles,” Physica a-Statistical Mechanics and Its Applications, vol. 281, pp. 17–29, Jun 15 2000.

    Article  Google Scholar 

  11. Y. Q. Song, J. H. Gong, Y. Li, T. J. Cui, L. Q. Fang, and W. C. Cao, “Crowd evacuation simulation for bioterrorism in micro-spatial environments based on virtual geographic environments,” Safety Science, vol. 53, pp. 105–113, Mar 2013.

    Article  Google Scholar 

  12. E. B. Hsu, Y. Li, J. D. Bayram, D. Levinson, S. Yang, and C. Monahan, “State of virtual reality based disaster preparedness and response training,” PLoS Curr, vol. 5, Apr 24 2013.

    Google Scholar 

  13. R. Lovreglio, “A Review of Augmented Reality Applications for Building Evacuation,” presented at the 17th International Conference on Computing in Civil and Building Engineering, Tampere, Finland, 2018.

    Google Scholar 

  14. R. Lovreglio, V. Gonzalez, Z. Feng, R. Amor, M. Spearpoint, J. Thomas, et al., “Prototyping Virtual Reality Serious Games for Building Earthquake Preparedness: The Auckland City Hospital Case Study,” arXiv preprint arXiv:1802.09119, 2018.

    Google Scholar 

  15. T. Vicsek, A. Czirok, E. Ben-Jacob, I. I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Phys Rev Lett, vol. 75, pp. 1226–1229, Aug 7 1995.

    Article  MathSciNet  Google Scholar 

  16. M. Kinateder, E. Ronchi, D. Nilsson, M. Kobes, M. Muller, P. Pauli, et al., “Virtual Reality for Fire Evacuation Research,” Federated Conference on Computer Science and Information Systems, 2014, vol. 2, pp. 313–321, 2014.

    Google Scholar 

  17. M. Haghani and M. Sarvi, “Crowd behaviour and motion: Empirical methods,” Transportation Research Part B-Methodological, vol. 107, pp. 253–293, Jan 2018.

    Article  Google Scholar 

  18. J. M. Loomis, J. J. Blascovich, and A. C. Beall, “Immersive virtual environment technology as a basic research tool in psychology,” Behavior Research Methods Instruments & Computers, vol. 31, pp. 557–564, Nov 1999.

    Google Scholar 

  19. W. R. Shadish, T. D. Cook, and D. T. Campbell, “Experimental and quasi-experimental designs for generalized causal inference,” 2002.

    Google Scholar 

  20. C. A. Anderson and B. J. Bushman, “External validity of “trivial” experiments: The case of laboratory aggression,” Review of General Psychology, vol. 1, pp. 19–41, 1997.

    Article  Google Scholar 

  21. W. H. Warren, “Collective motion in human crowds,” Current Directions in Psychological Science, 2018.

    Google Scholar 

  22. J. K. Stefanucci, S. H. Creem-Regehr, W. B. Thompson, D. A. Lessard, and M. N. Geuss, “Evaluating the Accuracy of Size Perception on Screen-Based Displays: Displayed Objects Appear Smaller Than Real Objects,” Journal of Experimental Psychology-Applied, vol. 21, pp. 215–223, Sep 2015.

    Google Scholar 

  23. C. J. Lin and B. H. Woldegiorgis, “Egocentric distance perception and performance of direct pointing in stereoscopic displays,” Appl Ergon, vol. 64, pp. 66–74, Oct 2017.

    Article  Google Scholar 

  24. B. J. Mohler, S. H. Creem-Regehr, and W. B. Thompson, “The influence of feedback on egocentric distance judgments in real and virtual environments,” in Proceedings of the 3rd symposium on Applied perception in graphics and visualization, 2006, pp. 9–14.

    Google Scholar 

  25. A. R. Richardson and D. Waller, “Interaction with an immersive virtual environment corrects users' distance estimates,” Hum Factors, vol. 49, pp. 507–17, Jun 2007.

    Article  Google Scholar 

  26. B. J. Mohler, J. L. Campos, M. Weyel, and H. H. Bülthoff, “Gait parameters while walking in a head-mounted display virtual environment and the real world,” in Proceedings of Eurographics, 2007, pp. 85–88.

    Google Scholar 

  27. J. H. Hollman, R. H. Brey, T. J. Bang, and K. R. Kaufman, “Does walking in a virtual environment induce unstable gait?: An examination of vertical ground reaction forces,” Gait & Posture, vol. 26, pp. 289–294, 2007.

    Article  Google Scholar 

  28. P. W. Fink, P. S. Foo, and W. H. Warren, “Obstacle Avoidance During Walking in Real and Virtual Environments,” Acm Transactions on Applied Perception, vol. 4, p. 2, Jan 2007.

    Article  Google Scholar 

  29. T. Y. Grechkin, J. M. Plumert, and J. K. Kearney, “Dynamic affordances in embodied interactive systems: the role of display and mode of locomotion,” IEEE Trans Vis Comput Graph, vol. 20, pp. 596–605, Apr 2014.

    Article  Google Scholar 

  30. G. Cirio, A. H. Olivier, M. Marchal, and J. Pettre, “Kinematic evaluation of virtual walking trajectories,” IEEE Trans Vis Comput Graph, vol. 19, pp. 671–80, Apr 2013.

    Article  Google Scholar 

  31. M. Auvray, C. Lenay, and J. Stewart, “Perceptual interactions in a minimalist virtual environment,” New Ideas in Psychology, vol. 27, pp. 32–47, Apr 2009.

    Article  Google Scholar 

  32. T. Froese, H. Iizuka, and T. Ikegami, “Embodied social interaction constitutes social cognition in pairs of humans: a minimalist virtual reality experiment,” Sci Rep, vol. 4, p. 3672, Jan 14 2014.

    Google Scholar 

  33. M. Garau, M. Slater, D. P. Pertaub, and S. Razzaque, “The responses of people to virtual humans in an immersive virtual environment,” Presence-Teleoperators and Virtual Environments, vol. 14, pp. 104–116, Feb 2005.

    Article  Google Scholar 

  34. J. N. Bailenson, J. Blascovich, A. C. Beall, and J. M. Loomis, “Equilibrium theory revisited: Mutual gaze and personal space in virtual environments,” Presence-Teleoperators and Virtual Environments, vol. 10, pp. 583–598, Dec 2001.

    Article  Google Scholar 

  35. M. Kyriakou, X. N. Pan, and Y. Chrysanthou, “Interaction with virtual crowd in Immersive and semi-Immersive Virtual Reality systems,” Computer Animation and Virtual Worlds, vol. 28, pp. e1729-n/a, Sep-Oct 2017.

    Google Scholar 

  36. B. Tarr, M. Slater, and E. Cohen, “Synchrony and social connection in immersive Virtual Reality,” Sci Rep, vol. 8, p. 3693, Feb 27 2018.

    Google Scholar 

  37. J. Hale and A. F. D. Hamilton, “Testing the relationship between mimicry, trust and rapport in virtual reality conversations,” Scientific Reports, vol. 6, p. 35295, Oct 14 2016.

    Google Scholar 

  38. J. Hale, M. E. Payne, K. M. Taylor, D. Paoletti, and C. H. A. F. De, “The virtual maze: A behavioural tool for measuring trust,” Q J Exp Psychol (Hove), vol. 71, pp. 989–1008, Apr 2018.

    Article  Google Scholar 

  39. N. W. Bode, J. Miller, R. O'Gorman, and E. A. Codling, “Increased costs reduce reciprocal helping behaviour of humans in a virtual evacuation experiment,” Sci Rep, vol. 5, p. 15896, Nov 6 2015.

    Google Scholar 

  40. L. Gamberini, L. Chittaro, A. Spagnolli, and C. Carlesso, “Psychological response to an emergency in virtual reality: Effects of victim ethnicity and emergency type on helping behavior and navigation,” Computers in Human Behavior, vol. 48, pp. 104–113, Jul 2015.

    Article  Google Scholar 

  41. B. Latane and J. M. Darley, “Group inhibition of bystander intervention in emergencies,” JPers Soc Psychol, vol. 10, pp. 215–21, Nov 1968.

    Google Scholar 

  42. M. Kinateder and W. H. Warren, “Social Influence on Evacuation Behavior in Real and Virtual Environments,” Frontiers in Robotics and Ai, vol. 3, Jul 25 2016.

    Google Scholar 

  43. M. Moussaid, M. Kapadia, T. Thrash, R. W. Sumner, M. Gross, D. Helbing, et al., “Crowd behaviour during high-stress evacuations in an immersive virtual environment,” J R Soc Interface, vol. 13, Sep 2016.

    Article  Google Scholar 

  44. A. H. Olivier, J. Bruneau, G. Cirio, and J. Pettre, “A Virtual Reality platform to study crowd behaviors,” Conference on Pedestrian and Evacuation Dynamics 2014 (Ped 2014), vol. 2, pp. 114–122, 2014.

    Article  Google Scholar 

  45. D. J. Sumpter, R. P. Mann, and A. Perna, “The modelling cycle for collective animal behaviour,” Interface Focus, vol. 2, pp. 764–73, Dec 6 2012.

    Article  Google Scholar 

  46. W. H. Warren, “The dynamics of perception and action,” Psychol Rev, vol. 113, pp. 358–89, Apr 2006.

    Article  MathSciNet  Google Scholar 

  47. M. T. Turvey, “Coordination,” Am Psychol, vol. 45, pp. 938–53, Aug 1990.

    Google Scholar 

  48. H. Haken, “Synergetics,” Physics Bulletin, vol. 28, p. 412, 1977.

    Article  MathSciNet  Google Scholar 

  49. J. Kelso, “Dynamic patterns: The self-organization of brain and behavior,” ed: Cambridge, MA: MIT Press, 1995.

    Google Scholar 

  50. H. Haken, J. A. Kelso, and H. Bunz, “A theoretical model of phase transitions in human hand movements,” Biol Cybern, vol. 51, pp. 347–56, 1985.

    Article  MathSciNet  Google Scholar 

  51. J. Gibson, “The theory of affordances The Ecological Approach to Visual Perception (pp. 127–143),” ed: Boston: Houghton Miffin, 1979.

    Google Scholar 

  52. K. W. Rio, G. C. Dachner, and W. H. Warren, “Local interactions underlying collective motion in human crowds,” Proceedings of the Royal Society B-Biological Sciences, vol. 285, May 16 2018.

    Article  Google Scholar 

  53. K. Rio and W. H. Warren, “The visual coupling between neighbors in real and virtual crowds,” in Conference on Pedestrian and Evacuation Dynamics 2014 (Ped 2014), 2014, pp. 132–140.

    Article  Google Scholar 

  54. T. D. Wirth and W. H. Warren, “The visual neighborhood in human crowds: Metric vs. Topological Hypotheses,” Journal of Vision, vol. 16, pp. 982–982, 2016.

    Article  Google Scholar 

  55. K. W. Rio, “Mapping the visual coupling between neighbors in real and virtual crowds,” Brown University, 2015.

    Google Scholar 

  56. A. Shendarkar, K. Vasudevan, S. Lee, and Y. J. Son, “Crowd simulation for emergency response using BDI agents based on immersive virtual reality,” Simulation Modelling Practice and Theory, vol. 16, pp. 1415–1429, Oct 2008.

    Article  Google Scholar 

  57. N. W. F. Bode and E. A. Codling, “Human exit route choice in virtual crowd evacuations,” Animal Behaviour, vol. 86, pp. 347–358, Aug 2013.

    Article  Google Scholar 

  58. N. W. Bode, A. U. Kemloh Wagoum, and E. A. Codling, “Information use by humans during dynamic route choice in virtual crowd evacuations,” R Soc Open Sci, vol. 2, p. 140410, Jan 2015.

    Article  Google Scholar 

  59. M. Kinateder, B. Comunale, and W. H. Warren, “Exit choice in an emergency evacuation scenario is influenced by exit familiarity and neighbor behavior,” Safety Science, vol. 106, pp. 170–175, 2018.

    Article  Google Scholar 

  60. R. Lovreglio, A. Fonzone, and L. Dell'Olio, “A mixed logit model for predicting exit choice during building evacuations,” Transportation Research Part a-Policy and Practice, vol. 92, pp. 59–75, Oct 2016.

    Google Scholar 

  61. P. Thompson and D. McGrath, “Exploring the Biomechanics of Walking and Crowd ,,Flow“,” presented at the Human Behaviour in Fire Symposium, Cambridge, UK, 2015.

    Google Scholar 

  62. M. Delin, J. Norén, E. Ronchi, K. Kuklane, A. Halder, and K. Fridolf, “Ascending stair evacuation: walking speed as a function of height,” Fire and Materials, vol. 41, pp. 514–534, 2017.

    Article  Google Scholar 

  63. K. Kuklane and A. Halder, “A model to estimate vertical speed of ascending evacuation from maximal work capacity data,” Safety Science, vol. 89, pp. 369–378, Nov 2016.

    Article  Google Scholar 

  64. M. Kinateder, E. D. Kuligowski, P. A. Reneke, and R. D. Peacock, “Risk perception in fire evacuation behavior revisited: definitions, related concepts, and empirical evidence,” Fire Sci Rev, vol. 4, p. 1, 2015.

    Google Scholar 

  65. E. D. Kuligowski, S. M. Gwynne, M. J. Kinsey, and L. Hulse, “Guidance for the Model User on Representing Human Behavior in Egress Models,” Fire Technol, vol. 53, pp. 649–672, Mar 2017.

    Article  Google Scholar 

  66. M. J. Kinsey, S. M. V. Gwynne, E. D. Kuligowski, and M. Kinateder, “The Impact of Cognitive Biases On Decision-making During Fire Evacuation,” Fire Technology, 2018.

    Google Scholar 

  67. M. J. Seitz, A. Templeton, J. Drury, G. Köster, and A. Philippides, “Parsimony versus reductionism: how can crowd psychology be introduced into computer simulation?,” Review of General Psychology, vol. 21, p. 95, 2017.

    Article  Google Scholar 

  68. A. Skulmowski, A. Bunge, K. Kaspar, and G. Pipa, “Forced-choice decision-making in modified trolley dilemma situations: a virtual reality and eye tracking study,” Front Behav Neurosci, vol. 8, p. 426, 2014.

    Google Scholar 

  69. C. D. Navarrete, M. M. McDonald, M. L. Mott, and B. Asher, “Virtual morality: emotion and action in a simulated three-dimensional “trolley problem”,” Emotion, vol. 12, pp. 364–70, Apr2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Kinateder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kinateder, M., Wirth, T.D., Warren, W.H. (2018). Crowd Dynamics in Virtual Reality. In: Gibelli, L., Bellomo, N. (eds) Crowd Dynamics, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-05129-7_2

Download citation

Publish with us

Policies and ethics