Skip to main content

Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces

  • Chapter
  • First Online:
Wrinkled Polymer Surfaces

Abstract

Wrinkled surfaces can be obtained through the control of surface instabilities produced by repeated irradiation of polymer surfaces by pulsed lasers. By the combination of the electric field associated with the laser beam and the heating of the polymer surface during a short period of time, which typically is in the range of nanosecond, when the irradiating with nanosecond laser pulses of are used, periodic dissipative structures appear. The periodic rippled topography is directly related to the wavelength of the laser. In this chapter, we discuss the role of actors like the substrate, the absorption of polymer, and the thermal conductivity and diffusivity on tuning the obtaining periodic structures.

In this chapter, a description of the experimental setup required for obtaining LIPSS is presented. Afterward, the necessary conditions to obtain LIPSS in polymer surfaces are discussed, and finally, LIPSS in different polymers are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.Y. Malkin, Surface instabilities. Colloid J. 70(6), 673–689 (2008)

    Article  CAS  Google Scholar 

  2. M.M. Denn, Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 33(1), 265–287 (2001)

    Article  Google Scholar 

  3. C.-M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61(7), 1041–1047 (2012)

    Article  CAS  Google Scholar 

  4. J. Rodríguez-Hernández, Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 42, 1–41 (2015)

    Article  Google Scholar 

  5. N. Vargas-Alfredo et al., Highly efficient antibacterial surfaces based on bacterial/cell size selective microporous supports. ACS Appl. Mater. Interfaces 9(51), 44270–44280 (2017)

    Article  CAS  Google Scholar 

  6. E. Schäffer et al., Electrically induced structure formation and pattern transfer. Nature 403, 874 (2000)

    Article  Google Scholar 

  7. N. Wu, W.B. Russel, Micro- and nano-patterns created via electrohydrodynamic instabilities. Nano Today 4(2), 180–192 (2009)

    Article  CAS  Google Scholar 

  8. M. Malinauskas et al., Ultrafast laser nanostructuring of photopolymers: A decade of advances. Phys. Rep. 533(1), 1–31 (2013)

    Article  CAS  Google Scholar 

  9. E. Rebollar et al., Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27(9), 5596–5606 (2011)

    Article  CAS  Google Scholar 

  10. E. Rebollar et al., In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering. Langmuir 31(13), 3973–3981 (2015)

    Article  CAS  Google Scholar 

  11. Á. Rodríguez-Rodríguez et al., Laser-induced periodic surface structures on conjugated polymers: Poly(3-hexylthiophene). Macromolecules 48(12), 4024–4031 (2015)

    Article  Google Scholar 

  12. I. Michaljaničová et al., Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 370, 131–141 (2016)

    Article  Google Scholar 

  13. M. Csete, Z. Bor, Laser-induced periodic surface structure formation on polyethylene-terephthalate. Appl. Surf. Sci. 133(1), 5–16 (1998)

    Article  CAS  Google Scholar 

  14. M. Csete et al., The role of original surface roughness in laser-induced periodic surface structure formation process on poly-carbonate films. Thin Solid Films 453–454, 114–120 (2004)

    Article  Google Scholar 

  15. M. Csete et al., Attenuated total reflection measurements on poly-carbonate surfaces structured by laser illumination. Appl. Surf. Sci. 208–209, 474–480 (2003)

    Article  Google Scholar 

  16. E. Rebollar et al., Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 100(4), 041106 (2012)

    Article  Google Scholar 

  17. Z. Guosheng, P.M. Fauchet, A.E. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B 26(10), 5366–5381 (1982)

    Article  CAS  Google Scholar 

  18. D.W. Bäuerle, Laser Processing and Chemistry (Springer, Berlin/Heidelberg, 2011)

    Book  Google Scholar 

  19. M. Li et al., Effects of post-thermal treatment on preparation of surface microstructures induced by polarized laser on polyimide film. Mater. Chem. Phys. 77(3), 895–898 (2003)

    Article  CAS  Google Scholar 

  20. C.M. Mate, M.F. Toney, K.A. Leach, Roughness of thin perfluoropolyether lubricant films: Influence on disk drive technology. IEEE Trans. Magn. 37(4), 1821–1823 (2001)

    Article  CAS  Google Scholar 

  21. J. Cui et al., Influence of substrate and film thickness on polymer LIPSS formation. Appl. Surf. Sci. 394, 125–131 (2017)

    Article  CAS  Google Scholar 

  22. P. Slepička et al., Angle dependent laser nanopatterning of poly(ethylene terephthalate) surfaces. Appl. Surf. Sci. 257(14), 6021–6025 (2011)

    Article  Google Scholar 

  23. M.A. Green, Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008)

    Article  CAS  Google Scholar 

  24. F.A. Lasagni et al., Fabrication and characterization in the micro-nano range. Adv. Struct. Mater. 10, 361–377 (2011)

    Google Scholar 

  25. E.C. Beder, C.D. Bass, W.L. Shackleford, Transmissivity and absorption of fused quartz between 0.22 μ and 3.5 μ from room temperature to 1500° C. Appl. Opt. 10(10), 2263–2268 (1971)

    Article  CAS  Google Scholar 

  26. P. Crystran Ltd, U., Silicon (Si). https://www.crystran.co.uk/optical-materials/silicon-si

  27. P. Crystran Ltd, U., Quartz Crystal (SiO2). https://www.crystran.co.uk/optical-materials/quartz-crystal-sio2

  28. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica*,†. J. Opt. Soc. Am. 55(10), 1205–1209 (1965)

    Article  CAS  Google Scholar 

  29. A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103(2), 577–644 (2003)

    Article  CAS  Google Scholar 

  30. S. Lazare et al., New surface modifications of polymer films with the excimer laser radiation, in Ninth International Symposium on Gas Flow and Chemical Lasers, (SPIE, Bellingham, 1993)

    Google Scholar 

  31. E. Rebollar et al., Physicochemical modifications accompanying UV laser induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells. Phys. Chem. Chem. Phys. 16(33), 17551–17559 (2014)

    Article  CAS  Google Scholar 

  32. E. Rebollar et al., Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29(12), 1796–1806 (2008)

    Article  CAS  Google Scholar 

  33. G. Mayer et al., Physico-chemical and biological evaluation of excimer laser irradiated polyethylene terephthalate (pet) surfaces. Biomaterials 27(4), 553–566 (2006)

    Article  CAS  Google Scholar 

  34. X. Wang et al., Cell directional migration and oriented division on three-dimensional laser-induced periodic surface structures on polystyrene. Biomaterials 29(13), 2049–2059 (2008)

    Article  CAS  Google Scholar 

  35. E. Rebollar et al., Gold coatings on polymer laser induced periodic surface structures: Assessment as substrates for surface-enhanced Raman scattering. Phys. Chem. Chem. Phys. 14(45), 15699–15705 (2012)

    Article  CAS  Google Scholar 

  36. E. Rebollar et al., Laser-induced surface structures on gold-coated polymers: Influence of morphology on surface-enhanced Raman scattering enhancement. J. Appl. Polym. Sci. 132(45), 42770 (2015)

    Article  Google Scholar 

  37. J. Cui et al., Laser-induced periodic surface structures on P3HT and on its photovoltaic blend with PC71BM. ACS Appl. Mater. Interfaces 8(46), 31894–31901 (2016)

    Article  CAS  Google Scholar 

  38. S. Pérez et al., Laser-induced periodic surface structuring of biopolymers. Appl. Phys. A 110(3), 683–690 (2013)

    Article  Google Scholar 

  39. I. Martín-Fabiani et al., Laser-induced periodic surface structures nanofabricated on poly(trimethylene terephthalate) spin-coated films. Langmuir 28(20), 7938–7945 (2012)

    Article  Google Scholar 

  40. M. Csete, O. Marti, Z. Bor, Laser-induced periodic surface structures on different poly-carbonate films. Appl. Phys. A 73(4), 521–526 (2001)

    Article  CAS  Google Scholar 

  41. Á. Rodríguez-Rodríguez et al., Patterning conjugated polymers by laser: Synergy of nanostructure formation in the all-polymer heterojunction P3HT/PCDTBT. Langmuir 34(1), 115–125 (2018)

    Article  Google Scholar 

  42. R.I. Rodríguez-Beltrán et al., Laser induced periodic surface structures on polymer nanocomposites with carbon nanoadditives. Appl. Phys. A 123(11), 717 (2017)

    Article  Google Scholar 

  43. R.I. Rodríguez-Beltrán et al., Laser induced periodic surface structures formation by nanosecond laser irradiation of poly (ethylene terephthalate) reinforced with expanded graphite. Appl. Surf. Sci. 436, 1193–1199 (2018)

    Article  Google Scholar 

  44. W. Hendrikson et al., Mold-based application of Laser-Induced Periodic Surface Structures (LIPSS) on biomaterials for nanoscale patterning. Macromol. Biosci. 16(1), 43–49 (2015)

    Article  Google Scholar 

  45. D.E. Martínez-Tong et al., Laser fabrication of polymer ferroelectric nanostructures for nonvolatile organic memory devices. ACS Appl. Mater. Interfaces 7(35), 19611–19618 (2015)

    Article  Google Scholar 

  46. E. Rebollar et al., Assessment of femtosecond laser induced periodic surface structures on polymer films. Phys. Chem. Chem. Phys. 15(27), 11287–11298 (2013)

    Article  CAS  Google Scholar 

  47. M. Forster et al., Periodic nanoscale structures on polyimide surfaces generated by temporally tailored femtosecond laser pulses. Phys. Chem. Chem. Phys. 13(9), 4155–4158 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness under the projects MAT2014-59187-R, MAT2015-66443-C02-1-R, and CTQ2016-75880-P. E.R. thanks MINECO for the tenure of a Ramón y Cajal contract (No. RYC-2011-08069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Nogales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rebollar, E., Ezquerra, T.A., Nogales, A. (2019). Laser-Induced Periodic Surface Structures (LIPSS) on Polymer Surfaces. In: González-Henríquez, C., Rodríguez-Hernández, J. (eds) Wrinkled Polymer Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-030-05123-5_6

Download citation

Publish with us

Policies and ethics