Skip to main content

Wrinkled Surfaces Designed for Biorelated Applications

  • Chapter
  • First Online:
Wrinkled Polymer Surfaces

Abstract

Wrinkling and buckling of multilayered materials are common methodologies used for generating micro- or nano-patterned topographies on the top of the devices. According to the material used and the size and distribution of those patterns, some of these devices can be used for several interesting purposes like aeronautics, force/pressure sensing, or particle selective transport. Biorelated purposes is also a field of application which has attracted high interest in the last years. To take advantage of micro-pattern characteristics is a clever way to impart some interesting capabilities to the material. Interestingly, these modifications could generate or improve some useful properties like biocompatibility or antibiofouling capacities. In this chapter, some of the most relevant examples of biorelated applications of wrinkled patterns are fully reviewed. As a summary, different topics are mentioned in this section, like scaffolds with cell proliferation improvement, devices which allow cellular alignment or differentiation, surfaces which help in the generation of multicellular-spheroid structures, or antibiofouling surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Aufan, Y. Sumi, S. Kim, et al., Facile synthesis of conductive polypyrrole wrinkle topographies on polydimethylsiloxane via a swelling-deswelling process and their potential uses in tissue engineering. ACS Appl. Mater. Interfaces 7, 23454–23463 (2015)

    Article  CAS  Google Scholar 

  2. A. Chen, D.K. Lieu, L. Freschauf, et al., Shrink-film configurable multiscale wrinkles for functional alignment of human embryonic stem cells and their cardiac derivatives. Adv. Mater. 23, 5785–5791 (2011)

    Article  CAS  Google Scholar 

  3. F. Greco, T. Fujie, L. Ricotti, et al., Microwrinkled conducting polymer Interface for anisotropic multicellular alignment. ACS Appl. Mater. Interfaces 5, 573–584 (2013)

    Article  CAS  Google Scholar 

  4. M. Guvendiren, J.A. Burdick, The control of stem cell morphology and differentiation by hydrogel surface wrinkles. Biomaterials 31, 6511–6518 (2010)

    Article  CAS  Google Scholar 

  5. J. Gu, X. Li, H. Ma, et al., One-step synthesis of PHEMA hydrogel films capable of generating highly ordered wrinkling patterns. Polymer (Guildf). 110, 114–123 (2017)

    Article  CAS  Google Scholar 

  6. Z. Zhao, J. Gu, Y. Zhao, et al., Hydrogel thin film with swelling-induced wrinkling patterns for high-throughput generation of multicellular spheroids. Biomacromolecules 15, 3306–3312 (2014)

    Article  CAS  Google Scholar 

  7. M. Nikkhah, F. Edalat, S. Manoucheri, et al., Engineering microscale topographies to control the cell-substrate Interface. Biomaterials 33, 5230–5246 (2012)

    Article  CAS  Google Scholar 

  8. D. Hoffman-kim, J.A. Mitchel, R.V. Bellamkonda, NIH Public Access. Annu. Rev. Biomed. Eng 12, 203–231 (2010)

    Article  CAS  Google Scholar 

  9. H.J. Jeon, C.G. Simon, G.H. Kim, A mini-review: Cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J. Biomed. Mater. Res. B Appl. Biomater. 102, 1580–1594 (2014)

    Article  Google Scholar 

  10. H. Izawa, N. Okuda, T. Yonemura, et al., Application of bio-based wrinkled surfaces as cell culture scaffolds. Colloid. Interface. 2, 15 (2018)

    Article  Google Scholar 

  11. L. Peng, S. Zhou, B. Yang, et al., Chemically modified surface having a dual-structured hierarchical topography for controlled cell growth. ACS Appl. Mater. Interfaces 9, 24339–24347 (2017)

    Article  CAS  Google Scholar 

  12. M. Li, D. Joung, B. Hughes, et al., Wrinkling non-spherical particles and its application in cell attachment promotion. Sci. Rep. 6, 30463 (2016)

    Article  CAS  Google Scholar 

  13. Q. Zhou, O. Castañeda Ocampo, C.F. Guimarães, et al., Screening platform for cell contact guidance based on inorganic biomaterial micro/nanotopographical gradients. ACS Appl. Mater. Interfaces 9, 31433–31445 (2017)

    Article  CAS  Google Scholar 

  14. X. Cui, Y. Hartanto, H. Zhang, Advances in multicellular spheroids formation. J. R. Soc. Interface 14, 20160877 (2017)

    Article  Google Scholar 

  15. A. Ivascu, M. Kubbies, Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. J. Biomol. Screen. 11, 922–932 (2006)

    Article  CAS  Google Scholar 

  16. X. Cui, S. Dini, S. Dai, et al., A mechanistic study on tumour spheroid formation in thermosensitive hydrogels: Experiments and mathematical modelling. RSC Adv. 6, 73282–73291 (2016)

    Article  CAS  Google Scholar 

  17. M.B. Oliveira, A.I. Neto, C.R. Correia, et al., Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. ACS Appl. Mater. Interfaces 6, 9488–9495 (2014)

    Article  CAS  Google Scholar 

  18. M. Ingram, G.B. Techy, R. Saroufeem, et al., Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol. Anim. 33, 459–466 (1997)

    Article  CAS  Google Scholar 

  19. K. Chen, M. Wu, F. Guo, et al., Rapid formation of size-controllable multicellular spheroids: Via 3D acoustic tweezers. Lab Chip 16, 2636–2643 (2016)

    Article  CAS  Google Scholar 

  20. Y. Zhang, H. Hu, X. Pei, et al., Polymer brushes on structural surfaces: A novel synergistic strategy for perfectly resisting algae settlement. Biomater. Sci. 5, 2493–2500 (2017)

    Article  CAS  Google Scholar 

  21. J.Z. Wang, Y.X. Zhu, H.C. Ma, et al., Developing Multi-Cellular Tumor Spheroid Model (MCTS) in the Chitosan/Collagen/Alginate (CCA) fibrous scaffold for anticancer drug screening. Mater. Sci. Eng. C 62, 215–225 (2016)

    Article  CAS  Google Scholar 

  22. V.H.B. Ho, N.K.H. Slater, R. Chen, PH-responsive Endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models. Biomaterials 32, 2953–2958 (2011)

    Article  CAS  Google Scholar 

  23. L. Xia, R.B. Sakban, Y. Qu, et al., Tethered spheroids as an in vitro hepatocyte model for drug safety screening. Biomaterials 33, 2165–2176 (2012)

    Article  CAS  Google Scholar 

  24. J. Zhang, S. Zhao, Y. Zhu, et al., Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 10, 2269–2281 (2014)

    Article  CAS  Google Scholar 

  25. C.S. Ware, T. Smith-Palmer, S. Peppou-Chapman, et al., Marine antifouling behavior of lubricant-infused nanowrinkled polymeric surfaces. ACS Appl. Mater. Interfaces 10, 4173–4182 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support given by FONDECYT Grant N° 1170209. M.A. Sarabia acknowledges the financial support given by CONICYT through the doctoral program Scholarship Grant. J. Rodriguez-Hernandez acknowledges financial support from Ministerio de Economia y Competitividad (MINECO) (Project MAT2016-78437-R, FEDER-EU) and, finally, VRAC Grant Number L216-04 of Universidad Tecnológica Metropolitana.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. M. González-Henríquez or Juan Rodríguez-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Henríquez, C.M., Sarabia Vallejos, M.A., Rodríguez-Hernández, J. (2019). Wrinkled Surfaces Designed for Biorelated Applications. In: González-Henríquez, C., Rodríguez-Hernández, J. (eds) Wrinkled Polymer Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-030-05123-5_12

Download citation

Publish with us

Policies and ethics