Skip to main content

Wrinkling Labyrinth Patterns on Elastomeric Janus Particles

  • Chapter
  • First Online:
  • 1043 Accesses

Abstract

Static and dynamic periodic patterns (stripes, wrinkles, and dots) are ubiquitous in nature, ranging from small wrinkles in soft materials (such as pumpkins, melons, nuts, and dehydrated fruits or even on animal’s skin) to much larger wavelength buckles (such as in lava flows or in geological structures, as in the desert sand).

In our work, we developed a simple method to fabricate Janus particles (films, spheres, and fibers) from a single urethane/urea elastomeric material, with two different surfaces: one smooth and another wrinkled. Wrinkles were generated by selectively UV-irradiating one-half of the elastomeric particles and permanently imprinted by swelling and drying the particles in an appropriate solvent. More, the particle surface can develop diverse wrinkling wavelengths depending on the swelling conditions.

We are able to fabricate monodisperse Janus particles from a single elastomeric material with two different hemispheres: one “aged” (wrinkled) and another “young” (flat). The hierarchical tuneable surface features produced open new horizons for application of these particles as, for example, components in biosensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.W. Melville, Advances in colloid science. Nature 151, 5–6 (1943)

    Article  Google Scholar 

  2. F. Schlesener, Colloidal Particles in Critical Fluids (Cuvillier Verlag Gottinger, Gottingen, 2004)

    Google Scholar 

  3. R.S. Krishnan, On the depolarisation of Tyndall scattering in colloids. Proceedings of the Indian Academy of Sciences – Section A 1(10), 717–722 (1935)

    Article  Google Scholar 

  4. G. Schmid, Clusters and Colloids: From Theory to Applications (VCH Verlagsgesellschaft mbH, Weinheim/New York, 2008)

    Google Scholar 

  5. I. Cho, K.W. Lee, Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. J. Appl. Polym. Sci. 30(5), 1903–1926 (1985)

    Article  CAS  Google Scholar 

  6. C. Casagrande, P. Fabre, E. Raphael, M. Veyssie, Janus Beads – Realization and Behavior at Water Oil Interfaces. Europhys. Lett. 9, 251–255 (1989)

    Article  CAS  Google Scholar 

  7. C. Casagrande, M.J. Veyssie, Beads – realization and 1st observation of interfacial properties. C. R. Acad. Sci. (Paris) 306, 1423–1425 (1988)

    Google Scholar 

  8. P.G. de Gennes, Soft matter. Rev. Mod. Phys. 64(3), 4 (1992)

    Article  Google Scholar 

  9. A. Walther, A.H.E. Muller, Janus particles. Soft Matter 4, 663–668 (2008)

    Article  CAS  Google Scholar 

  10. H.J. Hektor, K. Scholtmeijer, Hydrophobins: Proteins with potential. Curr. Opin. Biotechnol. 16(4), 434–439 (2005)

    Article  CAS  Google Scholar 

  11. L. Hong, S. Jiang, S. Granick, Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23), 9495–9499 (2006)

    Article  CAS  Google Scholar 

  12. S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Granick, Janus particle synthesis and assembly. Adv. Mater. 22(10), 1060–1071 (2010)

    Article  CAS  Google Scholar 

  13. F. Liang, B. Liu, Z. Cao, Z. Yang, Janus colloids toward interfacial engineering. Langmuir 34(14), 4123-4131 (2018)

    Article  CAS  Google Scholar 

  14. A.-H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 46, 1222–1244 (2007)

    Article  CAS  Google Scholar 

  15. J. Gao, H. Gu, B. Xu, Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 42(8), 1097–1107 (2009)

    Article  CAS  Google Scholar 

  16. U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19(1), 33–60 (2006)

    Article  CAS  Google Scholar 

  17. N. Zhao, M. Gao, Magnetic Janus particles prepared by a flame synthetic approach: Synthesis, characterizations and properties. Adv. Mater. 21(2), 184–187 (2009)

    Article  CAS  Google Scholar 

  18. Y. Li, W.-B. Zhang, I.F. Hsieh, G. Zhang, Y. Cao, X. Li, C. Wesdemiotis, B. Lotz, H. Xiong, S.Z.D. Cheng, Breaking symmetry toward nonspherical Janus particles based on polyhedral oligomeric silsesquioxanes: Molecular design, “Click” synthesis, and hierarchical structure. J. Am. Chem. Soc. 133(28), 10712–10715 (2011)

    Article  CAS  Google Scholar 

  19. X. Feng, R. Zhang, Y. Li, Y.-l. Hong, D. Guo, K. Lang, K.-Y. Wu, M. Huang, J. Mao, C. Wesdemiotis, Y. Nishiyama, W.-B. Zhang, T. Miyoshi, T. Li, S.Z.D. Cheng, Hierarchical self-organization of ABn Dendron-like molecules into a supramolecular lattice sequence. ACS Cent. Sci. 3(8), 860–867 (2017)

    Article  CAS  Google Scholar 

  20. H. Wu, Y.-Q. Zhang, M.-B. Hu, L.-J. Ren, Y. Lin, W. Wang, Creating quasi two-dimensional cluster-assembled materials through self-assembly of a Janus Polyoxometalate-Silsesquioxane co-cluster. Langmuir 33(21), 5283–5290 (2017)

    Article  CAS  Google Scholar 

  21. C. Ohm, N. Kapernaum, D. Nonnenmacher, F. Giesselmann, C. Serra, R. Zentel, Microfluidic synthesis of highly shape-anisotropic particles from liquid crystalline elastomers with defined director field configurations. J. Am. Chem. Soc. 133(14), 5305–5311 (2011)

    Article  CAS  Google Scholar 

  22. T. Hessberger, L.B. Braun, F. Henrich, C. Muller, F. Giesselmann, C. Serra, R. Zentel, Co-flow microfluidic synthesis of liquid crystalline actuating Janus particles. J. Mater. Chem. C 4, 8778–8786 (2016)

    Article  CAS  Google Scholar 

  23. V.B. Varma, R.G. Wu, Z.P. Wang, R.V. Ramanujan, Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab Chip 17(20), 3514–3525 (2017)

    Article  CAS  Google Scholar 

  24. P.-F. Jin, Y. Shao, G.-Z. Yin, S. Yang, J. He, P. Ni, W.-B. Zhang, Janus Polystyrene–Polydimethylsiloxane star polymers with a cubic core. Macromolecules 51(2), 419–427 (2018)

    Article  CAS  Google Scholar 

  25. F. Wurm, A.F.M. Kilbinger, Polymeric Janus particles. Angew. Chem. Int. Ed. 48(45), 8412–8421 (2009)

    Article  CAS  Google Scholar 

  26. S. Lone, I.W. Cheong, Fabrication of polymeric Janus particles by droplet microfluidics. RSC Adv. 4(26), 13322–13333 (2014)

    Article  CAS  Google Scholar 

  27. H. Yabu, M. Kanahara, M. Shimomura, T. Arita, K. Harano, E. Nakamura, T. Higuchi, H. Jinnai, Polymer Janus particles containing block-copolymer stabilized magnetic nanoparticles. ACS Appl. Mater. Interfaces 5(8), 3262–3266 (2013)

    Article  CAS  Google Scholar 

  28. Y. Yi, L. Sanchez, Y. Gao, Y. Yu, Janus particles for biological imaging and sensing. Analyst 141(12), 3526–3539 (2016)

    Article  CAS  Google Scholar 

  29. G. Luo, L. Du, Y. Wang, Y. Lu, J. Xu, Controllable preparation of particles with microfluidics. Particuology 9(6), 545–558 (2011)

    Article  CAS  Google Scholar 

  30. X.-T. Sun, M. Liu, Z.-R. Xu, Microfluidic fabrication of multifunctional particles and their analytical applications. Talanta 121, 163–177 (2014)

    Article  CAS  Google Scholar 

  31. T. Nisisako, Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 25, 1–12 (2016)

    Article  CAS  Google Scholar 

  32. Z. Nie, W. Li, M. Seo, S. Xu, E. Kumacheva, Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly. J. Am. Chem. Soc. 128(29), 9408–9412 (2006)

    Article  CAS  Google Scholar 

  33. K.-H. Roh, D.C. Martin, J. Lahann, Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 4, 759–763 (2005)

    Article  CAS  Google Scholar 

  34. S. Rahmani, C.H. Villa, A.F. Dishman, M.E. Grabowski, D.C. Pan, H. Durmaz, A.C. Misra, L. Colón-Meléndez, M.J. Solomon, V.R. Muzykantov, J. Lahann, Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. J. Drug Target. 23(7–8), 750–758 (2015)

    Article  CAS  Google Scholar 

  35. Z. Cao, Q. Bian, Y. Chen, F. Liang, G. Wang, Light-responsive janus-particle-based coatings for cell capture and release. ACS Macro Lett. 6(10), 1124–1128 (2017)

    Article  CAS  Google Scholar 

  36. A. Walther, A.H.E. Müller, Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113(7), 5194–5261 (2013)

    Article  CAS  Google Scholar 

  37. S. Sacanna, M. Korpics, K. Rodriguez, L. Colón-Meléndez, S.-H. Kim, D.J. Pine, G.-R. Yi, Shaping colloids for self-assembly. Nat. Commun. 4(1688), 1–6 (2013)

    Google Scholar 

  38. J. Zhang, B.A. Grzybowski, S. Granick, Janus particle synthesis, assembly, and application. Langmuir 33, 6964–6977 (2017)

    Article  CAS  Google Scholar 

  39. A. Walther, M. Hoffmann, H.E. Müller Axel, Emulsion polymerization using Janus particles as stabilizers. Angew. Chem. 120(4), 723–726 (2007)

    Article  Google Scholar 

  40. X. Pei, Y. Tan, K. Xu, C. Liu, C. Lu, P. Wang, Pickering polymerization of styrene stabilized by starch-based nanospheres. Polym. Chem. 7(19), 3325–3333 (2016)

    Article  CAS  Google Scholar 

  41. J. Tang, P.J. Quinlan, K.C. Tam, Stimuli-responsive Pickering emulsions: Recent advances and potential applications. Soft Matter 11(18), 3512–3529 (2015)

    Article  CAS  Google Scholar 

  42. Y. Gao, Y. Yu, How half-coated Janus particles enter cells. J. Am. Chem. Soc. 135(51), 19091–19094 (2013)

    Article  CAS  Google Scholar 

  43. F. Khan, M. Tanaka, Designing smart biomaterials for tissue engineering. Int. J. Mol. Sci. 19, 17 (2018)

    Article  CAS  Google Scholar 

  44. J.A. Champion, Y.K. Katare, S. Mitragotri, Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121(1), 3–9 (2007)

    Article  CAS  Google Scholar 

  45. Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 65(1), 104–120 (2013)

    Article  CAS  Google Scholar 

  46. H. Xie, Z.-G. She, S. Wang, G. Sharma, J.W. Smith, One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28(9), 4459–4463 (2012)

    Article  CAS  Google Scholar 

  47. S. Hwang, J. Lahann, Differentially degradable Janus particles for controlled release applications. Macromol. Rapid Commun. 33(14), 1178–1183 (2012)

    Article  CAS  Google Scholar 

  48. P. Johal, S. Chaudhary, Electronic paper technology. Int. J. Adv. Res. Sci. Eng. 2(9), 106-110 (2013)

    Google Scholar 

  49. Y. Komazakia, H. Hirama, T. Torii, Electrically and magnetically dual-driven Janus particles for handwriting-enabled electronic paper. J. Appl. Phys. 117, 154506 (2015)

    Article  CAS  Google Scholar 

  50. Y. Komazaki, T. Torii, Memory effect canceling and novel driving scheme of twisting-ball display via space-charge polarization. J. Soc. Inf. Disp. 25(5), 295–301 (2017)

    Article  Google Scholar 

  51. X. Ma, A. Jannasch, U.-R. Albrecht, K. Hahn, A. Miguel-López, E. Schäffer, S. Sánchez, Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15(10), 7043–7050 (2015)

    Article  CAS  Google Scholar 

  52. P.S. Schattling, M.A. Ramos-Docampo, V. Salgueiriño, B. Städler, Double-fueled Janus swimmers with magnetotactic behavior. ACS Nano 11(4), 3973–3983 (2017)

    Article  CAS  Google Scholar 

  53. M. Guix, S.M. Weiz, O.G. Schmidt, M. Medina-Sánchez, Self-propelled micro/nanoparticle motors. Part. Part. Syst. Charact. 35(2), 1700382 (2018)

    Article  Google Scholar 

  54. J. Zhang, J. Yan, S. Granick, Directed self-assembly pathways of active colloidal clusters. Angew. Chem. Int. Ed. 55(17), 5166–5169 (2016)

    Article  CAS  Google Scholar 

  55. J. Yan, M. Han, J. Zhang, C. Xu, E. Luijten, S. Granick, Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15, 1095–1099 (2016)

    Article  CAS  Google Scholar 

  56. K.-H. Roh, M. Yoshida, J. Lahann, Water-stable biphasic nanocolloids with potential use as anisotropic imaging probes. Langmuir 23(10), 5683–5688 (2007)

    Article  CAS  Google Scholar 

  57. J. Jiang, H. Gu, H. Shao, E. Devlin, G.C. Papaefthymiou, J.Y. Ying, Bifunctional Fe3O4–Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation. Adv. Mater. 20, 4403–4407 (2008)

    Article  CAS  Google Scholar 

  58. S.H. Hu, X. Gao, Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc. 132, 7234–7237 (2010)

    Article  CAS  Google Scholar 

  59. L.Y. Wu, B.M. Ross, S. Hong, L.P. Lee, Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small 6, 503–507 (2010)

    Article  CAS  Google Scholar 

  60. A. Kirillova, C. Schliebe, G. Stoychev, A. Jakob, H. Lang, A. Synytska, Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces 7(38), 21218–21225 (2015)

    Article  CAS  Google Scholar 

  61. J. Faria, M.P. Ruiz, D.E. Resasco, Phase-selective catalysis in emulsions stabilized by Janus silica-nanoparticles. Adv. Synth. Catal. 352(14–15), 2359–2364 (2010)

    Article  CAS  Google Scholar 

  62. L. Baraban, D. Makarov, R. Streubel, I. Mönch, D. Grimm, S. Sanchez, O.G. Schmidt, Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery. ACS Nano 6(4), 3383–3389 (2012)

    Article  CAS  Google Scholar 

  63. S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Steve Granick, Janus particle synthesis and assembly. Adv. Mater. 22, 1060–1071 (2010)

    Article  CAS  Google Scholar 

  64. J.-W. Kim, R.J. Larsen, D.A. Weitz, Synthesis of nonspherical colloidal particles with anisotropic properties. J. Am. Chem. Soc. 128(44), 14374–14377 (2006)

    Article  CAS  Google Scholar 

  65. J. Genzer, J. Groenewold, Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2(4), 310–323 (2006)

    Article  CAS  Google Scholar 

  66. Y. Xuan, X. Guo, Y. Cui, Crack-free controlled wrinkling of a bilayer film with a gradient interface. Soft Matter 8(37), 9603–9609 (2012)

    Article  CAS  Google Scholar 

  67. T. Okayasu, H.L. Zhang, D.G. Bucknall, Spontaneous formation of ordered lateral patterns in polymer thin-film structures. Adv. Funct. Mater. 14(11), 1081–1088 (2004)

    Article  CAS  Google Scholar 

  68. A.F. Miller, Materials science: Exploiting wrinkle formation. Science 317(5838), 605–606 (2007)

    Article  CAS  Google Scholar 

  69. M.H. Godinho, A.C. Trindade, J.L. Figueirinhas, L.V. Melo, P. Brogueira, A.M. Deus, P.I.C. Teixeira, Tuneable micro-and nano-periodic structures in a free-standing flexible urethane/urea elastomer film. Eur. Phys. J. E Soft Matter 21, 319–330 (2006)

    Article  CAS  Google Scholar 

  70. C. Zhao, M.N. de Pinho, Design of polypropylene oxide/polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes. Polymer 40(22), 6089–6097 (1999)

    Article  CAS  Google Scholar 

  71. A.C. Trindade, M.H. Godinho, J.L. Figueirinhas, Shear induced finite orientational order in urethane/urea elastomers. Polymer 45(16), 5551–5555 (2004)

    Article  CAS  Google Scholar 

  72. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  CAS  Google Scholar 

  73. A.C. Trindade, A.P.C. Almeida, J.P. Canejo, P. Patrício, P. Pieranski, M.H. Godinho, Elastomeric patterns probed by a nematic liquid crystal. Mol. Cryst. Liq. Cryst. 657(11), 136-146 (2017)

    Article  CAS  Google Scholar 

  74. J. Yin, C. Lu, Hierarchical surface wrinkles directed by wrinkled templates. Soft Matter 8(24), 6528–6534 (2012)

    Article  CAS  Google Scholar 

  75. L. Liu, M. Ren, W. Yang, Preparation of polymeric Janus particles by directional UV-directed reactions. Langmuir 25, 11048–11053 (2009)

    Article  CAS  Google Scholar 

  76. X. Cai, Y. Wang, X. Wang, J. Ji, J. Hong, H. Pan, J. Chen, M. Xue, Fabrication of ultrafine soft-matter arrays by selective contact thermochemical reaction. Sci. Rep. 3, 1780 (2013)

    Article  CAS  Google Scholar 

  77. J. Yin, Z. Cao, I. Sheinman, X. Chen, Stress-driven buckling patterns in spheroidal core/shell structures. Proc. Natl. Acad. Sci. 105(49), 19132–19135 (2008)

    Article  CAS  Google Scholar 

  78. M. Li, N. Hakimi, R. Perez, S. Waldman, A. Kozinski Janusz, K. Hwang Dae, Microarchitecture for a three-dimensional wrinkled surface platform. Adv. Mater. 27(11), 1880–1886 (2015)

    Article  CAS  Google Scholar 

  79. D. Terwagne, M. Brojan, M. Reis Pedro, Smart morphable surfaces for aerodynamic drag control. Adv. Mater. 26(38), 6608–6611 (2014)

    Article  CAS  Google Scholar 

  80. B. Liu, W. Wei, X. Qu, Z. Yang, Janus colloids formed by biphasic grafting at a pickering emulsion interface. Angew. Chem. 120(21), 4037–4039 (2008)

    Article  Google Scholar 

  81. Y. Yang, X. Han, W. Ding, S. Jiang, Y. Cao, C. Lu, Controlled free edge effects in surface wrinkling via combination of external straining and selective O2 plasma exposure. Langmuir 29(23), 7170–7177 (2013)

    Article  CAS  Google Scholar 

  82. M. Watanabe, K. Mizukami, Well-ordered wrinkling patterns on chemically oxidized poly(dimethylsiloxane) surfaces. Macromolecules 45(17), 7128–7134 (2012)

    Article  CAS  Google Scholar 

  83. J. Ji, M. Fuji, H. Watanabe, T. Shirai, Partially functionalized Janus ZnO spheres prepared by protecting mask techniques. Colloids Surf. A Physicochem. Eng. Asp. 393, 6–10 (2012)

    Article  CAS  Google Scholar 

  84. S.-W. Choi, I.W. Cheong, J.-H. Kim, Y. Xia, Preparation of uniform microspheres using a simple fluidic device and their crystallization into close-packed lattices. Small 5, 454–459 (2009)

    Article  CAS  Google Scholar 

  85. A.C. Trindade, J.P. Canejo, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Hierarchical wrinkling on elastomeric Janus spheres. J. Mater. Chem. 22, 22044 (2012)

    Article  CAS  Google Scholar 

  86. A.C. Trindade, J.P. Canejo, L.F.V. Pinto, P. Patrício, P. Brogueira, P.I.C. Teixeira, M.H. Godinho, Wrinkling labyrinth patterns on elastomeric janus particles. Macromolecules 44(7), 2220–2228 (2011)

    Article  CAS  Google Scholar 

  87. G. Cao, X. Chen, C. Li, Z. Cao, lf- assembled gular and labyrinth buckling patterns of thin films on spherical subtes. Phys. Rev. Let. 100, 036102 (2008)

    Article  CAS  Google Scholar 

  88. A.C. Trindade, J.P. Canejo, P.I.C. Teixeira, P. Patrício, M.H. Godinho, First curl, then wrinkle. Macromol. Rapid Commun. 34(20), 1618–1622 (2013)

    Article  CAS  Google Scholar 

  89. P. Teixeira, A.C. Trindade, M.H. Godinho, J. Azeredo, R. Oliveira, J.G. Fonseca, Staphylococcus epidermidis adhesion on modified urea/urethane elastomers. J. Biomater. Sci. Polym. Ed. 17(1-2), 239-246 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by FEDER through the COMPETE 2020 Program and National Funds through FCT – Portuguese Foundation for Science and Technology under project numbers POCI- 01-0145-FEDER-007688 (Reference UID/CTM/50025), UID/FIS/00618/2013, PTDC/FIS-NAN/0117/2014, PTDC/CTMBIO/6178/2014, and M-ERA-NET2/0007/2016 (CellColor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Catarina Trindade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trindade, A.C., Patrício, P., Teixeira, P.I., Godinho, M.H. (2019). Wrinkling Labyrinth Patterns on Elastomeric Janus Particles. In: González-Henríquez, C., Rodríguez-Hernández, J. (eds) Wrinkled Polymer Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-030-05123-5_11

Download citation

Publish with us

Policies and ethics