Skip to main content

Polarimetric Classification of Radar Echo

  • Chapter
  • First Online:
  • 1306 Accesses

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Automatic classification of radar returns using the polarimetric variables and environmental conditions is presented in this chapter. General principles of classification are reviewed with emphasis on the fuzzy logic method. Then, the hydrometeor classification algorithm operational on WSR-88D network is described, and other classification algorithms are discussed. The method for melting layer detection as an important part of the most classification schemes is described in detail. A section of the chapter is devoted to detection of hail and estimation of its size together with some verification. Also presented is automated detection of tornado debris signatures in the context of tornado detection, and tracks of detections are plotted along the damage paths of several tornadoes. Automatic detection of convective updrafts is based on the columns of differential reflectivity, and examples are included. A separate section is devoted to classification specifically tailored for winter precipitation. This implies combined use of the polarimetric data and numerical weather prediction model output. Finally, classification of radar returns other than from hydrometeors is described. Specifically, polarimetric methods to identify land and sea clutter, biological scatterers, chaff, smoke plumes, dust storms, and volcanic ash are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achtemeier, G. (1991). The use of insects as tracers for “clear air” boundary-layer studies by Doppler radar. Journal of Atmospheric and Oceanic Technology, 8, 746–765.

    Article  Google Scholar 

  • Al-Sakka, H., Boumahmoud, A., Fradon, B., Frasier, S., & Tabary, P. (2013). A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. Journal of Applied Meteorology and Climatology, 52, 2328–2344.

    Article  Google Scholar 

  • Atlas, D., & Ludlam, F. (1961). Multi-wavelength radar reflectivity of hailstorms. Quarterly Journal of the Royal Meteorological Society, 87, 523–534.

    Article  Google Scholar 

  • Aydin, K., Seliga, T., & Balaji, V. (1986). Remote sensing of hail with a dual linear polarization radar. Journal of Applied Meteorology, 25, 1475–1484.

    Article  Google Scholar 

  • Balakrishnan, N., & Zrnic, D. (1990). Use of polarization to characterize precipitation and discriminate large hail. Journal of the Atmospheric Sciences, 47, 1525–1540.

    Article  Google Scholar 

  • Bechini, R., & Chandrasekar, V. (2015). A semisupervised robust hydrometeor classification method for dual-polarization radar applications. Journal of Atmospheric and Oceanic Technology, 32, 22–47.

    Article  Google Scholar 

  • Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., & Berne, A. (2016). Hydrometeor classification through statistical clustering of polarimetric radar measurements: A semi-supervised approach. Atmospheric Measurement Techniques, 9, 4425–4445.

    Article  Google Scholar 

  • Boodoo, S., Hudak, D., Donaldson, N., & Leduc, M. (2010). Application of dual-polarization radar melting-layer detection algorithm. Journal of Applied Meteorology and Climatology, 49, 1779–1793.

    Article  Google Scholar 

  • Brandes, E., & Ikeda, K. (2004). Freezing-level estimation with polarimetric radar. Journal of Applied Meteorology, 43, 1541–1553.

    Article  Google Scholar 

  • Bringi, V., Vivekanandan, J., & Tuttle, J. (1986). Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. Journal of the Atmospheric Sciences, 43, 2564–2577.

    Article  Google Scholar 

  • Brown, J. M., Smirnova, T. G., Olson, J. B., Grell, G. A., Dowell, D. C., Benjamin, S., et al. (2011). Improvement and testing of WRF physics options for application to rapid refresh and high resolution rapid refresh. In Preprints, 14th Conf. on Mesoscale Processes/15th Conf. on Aviation, Range, and Aerospace Meteorology, Los Angeles, CA, Amer. Meteor. Soc. 5.5. Retrieved from https://ams.confex.com/ams/14Meso15ARAM/webprogram/Paper191234.html

  • Cao, Q., Zhang, G., Palmer, R., Knight, M., May, R., & Stafford, R. (2012). Spectrum – Time estimation and processing (STEP) for improving weather radar data quality. IEEE Transactions on Geoscience and Remote Sensing, 50, 4670–4683.

    Article  Google Scholar 

  • Chandrasekar, V., Keranen, R., Lim, S., & Moisseev, D. (2013). Recent advances in classification of observations from dual-polarization weather radars. Atmospheric Research, 119, 97–111.

    Article  Google Scholar 

  • Chilson, P., Frick, W., Kelly, J., Howard, K., Larkin, R., Diehl, R., Westbrook, J., Kelly, T., & Kunz, T. (2012). Partly cloudy with a chance of migration: Weather, radars, and aeroecology. Bulletin of the American Meteorological Society, 93, 669–686.

    Article  Google Scholar 

  • Depue, T., Kennedy, P., & Rutledge, S. (2007). Performance of the hail differential reflectivity (HDR) polarimetric radar hail indicator. Journal of Applied Meteorology and Climatology, 46, 1290–1301.

    Article  Google Scholar 

  • Dolan, B., & Rutledge, S. (2009). A theory-based hydrometeor identification algorithm for X-band polarimetric radars. Journal of Atmospheric and Oceanic Technology, 26, 20171–22088.

    Article  Google Scholar 

  • Dolan, B., Rutledge, S., Lim, S., Chandrasekar, V., & Thurai, M. (2013). A robust C-band hydrometeor identification algorithm and application to a long-term polarimetric radar dataset. Journal of Applied Meteorology and Climatology, 52, 2162–2186.

    Article  Google Scholar 

  • Eccles, P., & Atlas, D. (1973). A dual-wavelength radar hail detector. Journal of Applied Meteorology, 12, 847–854.

    Article  Google Scholar 

  • Elmore, K., Flamig, Z., Lakshmanan, V., Kaney, B., Reeves, H., Farmer, V., & Rothfusz, L. (2014). mPING: Crowd-sourcing weather reports for research. Bulletin of the American Meteorological Society, 95, 1335–1342.

    Article  Google Scholar 

  • Fabry, F. (2015). Radar meteorology. Principles and practice (p. 256). Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Feral, L., Sauvageot, H., & Soula, S. (2003). Hail detection using S- and C-band radar reflectivity difference. Journal of Atmospheric and Oceanic Technology, 20, 233–248.

    Article  Google Scholar 

  • Giangrande, S. E., Krause, J. M., & Ryzhkov, A. V. (2008). Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. Journal of Applied Meteorology and Climatology, 47, 1354–1364.

    Article  Google Scholar 

  • Grazioli, J., Turia, D., & Berne, A. (2015). Hydrometeor classification from polarimetric radar measurements: A clustering approach. Atmospheric Measurement Techniques, 8, 149–170.

    Article  Google Scholar 

  • Greene, D., & Clark, R. (1972). Vertically integrated liquid water – A new analysis tool. Monthly Weather Review, 100, 548–552.

    Article  Google Scholar 

  • Hannessen, R., & Weipert, A. (2011a). A probability-based sea clutter suppression method for polarimetric weather radar systems. In Weather radar and hydrology, proceedings of a symposium held in Exeter, UK, April 2011 (pp. 52–57).

    Google Scholar 

  • Hannessen, R., & Weipert, A. (2011b). An algorithm to detect and quantify volcanic eruptions using polarimetric X-band radar data. In International workshop on X-band Weather Radar, Delft, The Netherlands.

    Google Scholar 

  • Heinselman, P., & Ryzhkov, A. (2006). Validation of polarimetric hail detection. Weather and Forecasting, 21, 839–850.

    Article  Google Scholar 

  • Holler, H., Brini, V., Hubbert, J., Hagen, M., & Meischner, P. (1994). Life cycle and precipitation formation in hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. Journal of the Atmospheric Sciences, 51, 2500–2522.

    Article  Google Scholar 

  • Hubbert, J., Dixon, M., & Ellis, S. (2009b). Weather radar ground clutter. Part II: Real-time identification and filtering. Journal of Atmospheric and Oceanic Technology, 26, 1181–1197.

    Article  Google Scholar 

  • Hubbert, J., Dixon, M., Ellis, S., & Meymaris, G. (2009a). Weather radar ground clutter. Part I: Identification, modeling, and simulation. Journal of Atmospheric and Oceanic Technology, 26, 1165–1180.

    Article  Google Scholar 

  • Ilotoviz, E., Benmoshe, N., Khain, A., Phillips, V., & Ryzhkov, A. (2016). Effect of aerosols on freezing drops, hail, and precipitation in a mid-latitude storm. Journal of the Atmospheric Sciences, 73, 109–144.

    Google Scholar 

  • Keenan, T. (2003). Hydrometeor classification with a C-band polarimetric radar. Australian Meteorological Magazine, 52, 23–31.

    Google Scholar 

  • Kennedy, P., Rutledge, S., Petersen, W., & Bringi, V. (2001). Polarimetric radar observations of hail formation. Journal of Applied Meteorology, 40, 1347–1366.

    Article  Google Scholar 

  • Keranen, R., Saltikoff, E., Chandrasekar, V., Lim, S., Holmes, J., & Selzler, J. (2007). Real-time hydrometeor classification for the operational forecasting environment. In Preprints, 33rd Conf. on Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc. P11B.11. Retrieved from https://ams.confex.com/ams/pdfpapers/123476.pdf

  • Kumjian, M., Khain, A., Benmoshe, N., Ilotoviz, E., Ryzhkov, A., & Phillips, V. (2014). The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. Journal of Applied Meteorology and Climatology, 53, 1820–1843.

    Article  Google Scholar 

  • Kurdzo, J., Williams, E., Smalley, D., Bennett, B., Patterson, D., Veillette, M., & Donovan, M. (2018). Polarimetric observations of chaff using the WSR-88D network. Journal of Applied Meteorology and Climatology, 57, 1063–1081.

    Article  Google Scholar 

  • Leitao, M., & Watson, P. (1984). Application of dual linearly polarized radar data to prediction of microwave path attenuation at 10 – 30 GHz. Radio Science, 19, 209–221.

    Article  Google Scholar 

  • Li, Y., Zhang, G., Doviak, R., Lei, L., & Cao, Q. (2013). A new approach to detect ground clutter mixed with weather signals. IEEE Transactions on Geoscience and Remote Sensing, 51, 2373–2387.

    Article  Google Scholar 

  • Lim, S., Chandrasekar, V., & Bringi, V. (2005). Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in-situ verification. IEEE Transactions on Geoscience and Remote Sensing, 42, 792–801.

    Article  Google Scholar 

  • Lim, S., Moisseev, D., Chandrasekar, V., & Lee, D.-R. (2013). Classification and quantification of rimed snow based on spatial variability of radar reflectivity. Journal of the Meteorological Society of Japan, 91, 763–774.

    Article  Google Scholar 

  • Liu, H., & Chandrasekar, V. (2000). Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. Journal of Atmospheric and Oceanic Technology, 17, 140–167.

    Article  Google Scholar 

  • Marzano, F., Scaranari, D., & Vulpiani, G. (2007). Supervised fuzzy-logic classification of hydrometeors using C-band weather radars. IEEE Transactions on Geoscience and Remote Sensing, 45, 3784–3799.

    Article  Google Scholar 

  • Matrosov, S., Clark, K., & Kingsmill, D. (2007). A polarimetric radar approach to identify rain, melting layer, and snow regions for applying corrections to vertical profiles of reflectivity. Journal of Applied Meteorology and Climatology, 46, 154–166.

    Article  Google Scholar 

  • Melnikov, V., Istok, M., & Westbrook, J. (2015). Asymmetric radar echo patterns from insects. Journal of Atmospheric and Oceanic Technology, 32, 659–674.

    Article  Google Scholar 

  • Melnikov, V., Zrnic, D., Rabin, R., & Zhang, P. (2008). Radar polarimetric signatures of fire plums in Oklahoma. Geophysical Research Letters, 35, L14815.

    Article  Google Scholar 

  • Meyers, M., DeMott, P., & Cotton, W. (1992). New primary ice-nucleation parameterization in an explicit cloud model. Journal of Applied Meteorology, 31, 708–721.

    Article  Google Scholar 

  • Montopoli, M., Vulpiani, G., Cimini, D., Piccotti, E., & Marzano, F. (2013). Interpretation of observed microwave signatures from ground dual-polarization radar and space multi-frequency radiometer for the 2011 Grimsvotn volcanic eruption. Atmospheric Measurement Techniques Discussions, 6, 6215–6248.

    Article  Google Scholar 

  • Mueller, E., & Larkin, R. (1985). Insects observed using dual-polarization radar. Journal of Atmospheric and Oceanic Technology, 2, 49–54.

    Article  Google Scholar 

  • Ortega, K., Krause, J., & Ryzhkov, A. (2016). Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. Journal of Applied Meteorology and Climatology, 55, 829–848.

    Article  Google Scholar 

  • Ortega, K. L., Smith, T. M., Manross, K. L., Kolodziej, A. G., Scharfenberg, K. A., Witt, A., & Gourley, J. (2009). The severe hazards analysis and verification experiment. Bulletin of the American Meteorological Society, 90, 1519–1530.

    Article  Google Scholar 

  • Park, H.-S., Ryzhkov, A., Zrnic, D., & Kim K.-E. (2007). Optimization of the matrix of weights in the polarimetric algorithm for classification of radar echoes. In Preprints, 33rd conf. on radar meteorology, Cairns, Australia, Amer. Meteor. Soc. P11B.4. Retrieved from http://ams.confex.com/ams/pdfpapers/123123.pdf

  • Park, H.-S., Ryzhkov, A., Zrnic, D., & Kim, K.-E. (2009). The hydrometeor classification algorithm for the polarimetric WSR-88D. Description and application to an MCS. Weather and Forecasting, 24, 730–748.

    Article  Google Scholar 

  • Picca, J., Kumjian, M., & Ryzhkov, A. (2010). ZDR columns as a predictive tool for hail growth and storm evolution. In Preprints, 25th conf. on severe local storms, Denver, CO, Amer. Meteor. Soc. 113. Retrieved from https://ams.confex.com/ams/pdfpapers/175750.pdf

  • Picca, J., & Ryzhkov, A. (2012). A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Monthly Weather Review, 140, 1385–1403.

    Article  Google Scholar 

  • Reeves, H., Elmore, K., Ryzhkov, A., Schuur, T., & Krause, J. (2014). Source of uncertainty in precipitation-type forecasting. Weather and Forecasting, 29, 936–953.

    Article  Google Scholar 

  • Reeves, H., Ryzhkov, A., & Krause, J. (2016). Discrimination between winter precipitation types based on spectral-bin microphysical modeling. Journal of Applied Meteorology and Climatology, 55, 1747–1761.

    Article  Google Scholar 

  • Rico-Ramirez, A., & Cluckie, I. (2008). Classification of ground clutter and anomalous propagation using dual-polarization weather radar. IEEE Transactions on Geoscience and Remote Sensing, 46, 1892–1904.

    Article  Google Scholar 

  • Ryzhkov, A., Kumjian, M., Ganson, S., & Khain, A. (2013a). Polarimetric radar characteristics of melting hail. Pt I: Theoretical simulations using spectral microphysical modeling. Journal of Applied Meteorology and Climatology, 52, 2849–2870.

    Article  Google Scholar 

  • Ryzhkov, A., Kumjian, M., Ganson, S., & Zhang, P. (2013b). Polarimetric radar characteristics of melting hail. Pt II: Practical implications. Journal of Applied Meteorology and Climatology, 52, 2871–2886.

    Article  Google Scholar 

  • Ryzhkov, A., Reeves, H., Krause, J., & Burcham, H. (2014). Discrimination between winter precipitation types based on explicit microphysical modeling of melting and refreezing in the polarimetric hydrometeor classification algorithm. In Eighth European conf. on radar meteorology, Garmisch-Partenkirchen, Germany. Europeran Meteorological Society. MIC.P07. Retrieved from http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/198_Ryzhkov.pdf

  • Ryzhkov, A., Zhang, P., Doviak, R., & Kessinger, C. (2002). Discrimination between weather and sea clutter using Doppler and dual-polarization weather radars. In Proc. 27th general assembly of the international union of radio science, Maastricht, Netherlands. F1.P.3. Retrieved from https://www.ursi.org/Proceedings/ProcGA02/papers/p1383.pdf

  • Ryzhkov, A. V. (2007). The impact of beam broadening on the quality of radar polarimetric data. Journal of Atmospheric and Oceanic Technology, 24, 729–744.

    Article  Google Scholar 

  • Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Giangrande, S., & Zrnic, D. S. (2005). The joint polarization experiment: Polarimetric rainfall measurements and hydrometeor classification. Bulletin of American Meteorological Society, 86, 809–824.

    Article  Google Scholar 

  • Schuur, T., Krause, J., & Ryzhkov A. (2015). A new melting layer detection algorithm that combines polarimetric radar-based detection with thermodynamic output from numerical models. In 37th Conference on Radar Meteorology. 7B.1.

    Google Scholar 

  • Schuur, T., Park, H.-S., Ryzhkov, A., & Reeves, H. (2012). Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. Journal of Applied Meteorology and Climatology, 51, 763–779.

    Article  Google Scholar 

  • Schuur, T., Ryzhkov, A., & Heinselman, P. (2003). Observations and classification of echoes with the polarimetric WSR-88D radar. NOAA/National Severe Storms Laboratory report (46pp).

    Google Scholar 

  • Siggia, A., & Passarelli, R., Jr. (2004). Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. In Proceedings of ERAD (2004), Visby, Island of Gotland, Sweden (pp. 63–73).

    Google Scholar 

  • Snyder, J., Bluestein, H., Zhang, G., & Frasier, S. (2010). Attenuation correction and hydrometeor classification of high resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. Journal of Atmospheric and Oceanic Technology, 27, 1979–2001.

    Article  Google Scholar 

  • Snyder, J., & Ryzhkov, A. (2015). Automated detection of polarimetric tornado debris signatures. Journal of Applied Meteorology and Climatology, 54, 1861–1870.

    Article  Google Scholar 

  • Snyder, J., Ryzhkov, A., Kumjian, M., Picca, J., & Khain, A. (2015). Developing a ZDR column detection algorithm to examine convective storm updrafts. Weather and Forecasting, 30, 1819–1844.

    Article  Google Scholar 

  • Stepanian, P., Horton, K., Melnikov, V., Zrnic, D., & Gauthreaux, S., Jr. (2016). Dual-polarization radar products for biological applications. Ecosphere, 7(11), e01539. https://doi.org/10.1002/ecs2.1539.

    Article  Google Scholar 

  • Straka, J. (1996). Hydrometeor fields in a supercell storm as deduced from dual-polarization radar. In Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc. (pp. 551–554).

    Google Scholar 

  • Straka, J., & Zrnic, D. (1993). An algorithm to deduce hydrometeor types and contents from multiparameter radar data. In Preprints, 26th Int. conf. on radar meteorology, Norman, OK, Amer. Meteor. Soc. (pp. 513–516).

    Google Scholar 

  • Straka, J. M., Zrnic, D. S., & Ryzhkov, A. V. (2000). Bulk hydrometeor classification and quantification using multiparameter radar data. Synthesis of relations. Journal of Applied Meteorology, 39, 1341–1372.

    Article  Google Scholar 

  • Tabary, P., Le Henaff, A., Vulpiani, G., Parent-du-Chatelet, J., & Gourley, J. J. (2006). Melting layer characterization and identification with a C-band dual-polarization radar: A long-term analysis. In Preprints, Fourth European conf. on radar in meteorology and hydrology (ERAD 2006), Barcelona, Spain (pp. 17–20).

    Google Scholar 

  • Thompson, E., Rutledge, S., Dolan, B., Chandrasekar, V., & Cheong, B.-L. (2014). A dual-polarization radar hydrometeor classification algorithm for winter precipitation. Journal of Atmospheric and Oceanic Technology, 31, 1457–1481.

    Article  Google Scholar 

  • Torres, S., & Warde, D. (2014). Ground clutter mitigation for weather radars using the autocorrelation spectral density. Journal of Atmospheric and Oceanic Technology, 31, 2049–2066.

    Article  Google Scholar 

  • Van den Broeke, M. (2013). Polarimetric radar observations of biological scatterers in hurricanes Irene (2011) and Sandy (2012). Journal of Atmospheric and Oceanic Technology, 30, 2754–2767.

    Article  Google Scholar 

  • Van den Broeke, M., & Alsarraf, H. (2016). Polarimetric radar observations of dust storms at C and S bands. Journal Of Operational Meteorology, 4(9), 123–131.

    Article  Google Scholar 

  • Van den Broeke, M., & Jauernic, S. (2014). Spatial and temporal characteristics of polarimetric tornadic debris signatures. Journal of Applied Meteorology and Climatology, 53, 2217–2231.

    Article  Google Scholar 

  • Vivekanandan, J., Zrnic, D. S., Ellis, S. M., Oye, D., Ryzhkov, A. V., & Straka, J. (1999). Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bulletin of the American Meteorological Society, 80, 381–388.

    Article  Google Scholar 

  • Waldvogel, A., Federer, B., & Grimm, P. (1979). Criteria for the detection of hail cells. Journal of Applied Meteorology, 18, 1521–1525.

    Article  Google Scholar 

  • Wen, G., Protat, A., May, P., Moran, W., & Dixon, M. (2016). Cluster-based method for hydrometeor classification using polarimetric variables. Part II: Classification. Journal of Atmospheric and Oceanic Technology, 33, 45–59.

    Article  Google Scholar 

  • Wen, G., Protat, A., May, P., Wang, X., & Moran, W. (2015). Cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis. Journal of Atmospheric and Oceanic Technology, 32, 1320–1330.

    Article  Google Scholar 

  • Williams, E., Nathou, E., Hicks, E., Pontikis, C., Russell, B., Miller, M., & Bartholomew, M. (2009). The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel. Atmospheric Research, 91, 292–298.

    Article  Google Scholar 

  • Witt, A., Eilts, M., Stumpf, G., Johnson, J., Mitchell, E., & Thomas, K. (1998). An enhanced hail detection algorithm for the WSR-88D. Weather and Forecasting, 13, 286–303.

    Article  Google Scholar 

  • Wolfensberger, D., Scipion, D., & Berne, A. (2016). Detection and characterization of the melting layer based on polarimetric radar scans. Quarterly Journal of the Royal Meteorological Society, 142, 108–124.

    Article  Google Scholar 

  • Zeng, Z., Yuter, S., House, R., & Kingsmill, D. (2001). Microphysics of the rapid development of heavy convective precipitation. Monthly Weather Review, 129, 1882–1904.

    Article  Google Scholar 

  • Zhang, G. (2016). Weather radar Polarimetry (p. 304). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Zhang, P., Zrnic, D., & Ryzhkov, A. (2015) Observations of negative ZDR in sandstorms and storm outflows. In Preprints, 37th conference on Radar Meteorology, Norman, OK, Amer. Meteor. Soc. (p. 259). Retrieved from https://ams.confex.com/ams/37RADAR/webprogram/Handout/Paper275678/37thPoster_PZhang.pdf

  • Zrnic, D., & Ryzhkov, A. (1998). Observations of insects and birds with a polarimetric radar. IEEE Transactions on Geoscience and Remote Sensing, 36, 661–668.

    Article  Google Scholar 

  • Zrnic, D., & Ryzhkov, A. (1999). Polarimetry for weather surveillance radars. Bulletin of the American Meteorological Society, 80, 389–406.

    Article  Google Scholar 

  • Zrnic, D. S., Bringi, V. N., Balakrishnan, N., Aydin, K., Chandrasekar, V., & Hubbert, J. (1993). Polarimetric measurements in a severe hailstorm. Monthly Weather Review, 121, 2221–2238.

    Article  Google Scholar 

  • Zrnic, D. S., & Ryzhkov, A. V. (2004). Polarimetric properties of chaff. Journal of Atmospheric and Oceanic Technology, 21, 1017–1024.

    Article  Google Scholar 

  • Zrnic, D. S., Ryzhkov, A. V., Straka, J., Liu, Y., & Vivekanandan, J. (2001). Testing a procedure for the automatic classification of hydrometeor types. Journal of Atmospheric and Oceanic Technology, 18, 892–913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryzhkov, A.V., Zrnic, D.S. (2019). Polarimetric Classification of Radar Echo. In: Radar Polarimetry for Weather Observations. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-05093-1_9

Download citation

Publish with us

Policies and ethics