Skip to main content

Polarimetric Characteristics of Deep Convective Storms

  • Chapter
  • First Online:
Radar Polarimetry for Weather Observations

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Overview of polarimetric measurements in deep convective storms is presented in this chapter. General characteristics of the spatial distributions of polarimetric radar variables in mesoscale convective systems (MCSs), hailstorms, and supercell tornadic storms are examined. Spatial pattern of the polarimetric variables in the MCSs is consistent with the accepted conceptual model. Combinations of polarimetric variables that correspond uniquely to locations within storms where specific scatterer types reside are identified and named “polarimetric signatures.” Prominent among these is the column of differential reflectivity indicative of convective updraft and preferred location for hail formation. The bottom of the column of specific differential phase is identified as location of precipitation-laden downdraft. Other important signatures associated with tornadic storms and discussed in this chapter are tornado debris signature (TDS), ZDR arc, and midlevel “rings” of enhanced ZDR and depressed ρhv. Examples of polarimetric variables in hailstorms are illustrated and related to the kinematic and microphysical features within these storms. Observations of large hail are presented, and comparisons between measurements at C and S band are made. Examples of tornado debris signatures observed with S-, C-, and X-band radars are also included. Modeling of the polarimetric characteristics of these deep convective storms is the subject of the last section, and examples from the literature are used to illustrate the inferred polarimetric signatures and compare these with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M., Carey, L., Petersen, W., & Knupp, K. (2011). C-band dual-polarization radar signatures of hail. Electronic Journal of Operational Meteorology, 2011-EJ2. Retrieved from http://www.nwas.org/ej/pdf/2011-EJ2.pdf

  • Aydin, K., Seliga, T., & Balaji, V. (1986). Remote sensing of hail with a dual linear polarization radar. Journal of Climate and Applied Meteorology, 25, 1475–1484.

    Article  Google Scholar 

  • Aydin, K., & Zhao, Y. (1990). A computational study of polarimetric radar observables in hail. IEEE Transactions on Geoscience and Remote Sensing, 28, 412–422.

    Article  Google Scholar 

  • Balakrishnan, N., & Zrnic, D. (1990). Use of polarization to characterize precipitation and discriminate large hail. Journal of the Atmospheric Sciences, 47, 1525–1540.

    Article  Google Scholar 

  • Blair, S., & Leighton, J. (2012). Creating high-resolution hail datasets using social media and post-storm ground surveys. Electronic Journal of Operational Meteorology, 13, 32–45.

    Google Scholar 

  • Bluestein, H. (2013). Severe convective storms and tornadoes. Observations and dynamics (p. 456). Berlin, Germany: Springer.

    Book  Google Scholar 

  • Bluestein, H., French, M., Tanamachi, R., Frasier, S., Hardwick, K., Junyent, F., & Pazmany, A. (2007). Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Monthly Weather Review, 135, 1522–1543.

    Article  Google Scholar 

  • Bluestein, H., Snyder, J., & Houser, J. (2015). A multiscale overview of the El Reno, Oklahoma, tornadic supercell of 31 May 2013. Weather and Forecasting, 30, 525–552.

    Article  Google Scholar 

  • Bodine, D., Kumjian, M., Palmer, R., Heinselman, P., & Ryzhkov, A. (2013). Tornado damage estimation using polarimetric radar. Weather and Forecasting, 28, 139–158.

    Article  Google Scholar 

  • Bodine, D., Palmer, R., & Zhang, G. (2014). Dual-wavelength polarimetric radar analyses of tornadic debris signatures. Journal of Applied Meteorology and Climatology, 53, 242–261.

    Article  Google Scholar 

  • Borowska, L., Ryzhkov, A., Zrnic, D., Simmer, C., & Palmer, R. (2011). Attenuation and differential attenuation of the 5 cm wavelength radiation in melting hail. Journal of Applied Meteorology and Climatology, 50, 59–76.

    Article  Google Scholar 

  • Bringi, V., Vivekanandan, J., & Tuttle, J. (1986). Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. Journal of the Atmospheric Sciences, 43, 2564–2577.

    Article  Google Scholar 

  • Brown, R. A., Lemon, L. R., & Burgess, D. W. (1978). Tornado detection by pulsed Doppler radar. Monthly Weather Review, 106, 29–38.

    Article  Google Scholar 

  • Burgess, D., et al. (2014). 20 May 2013 Moore, Oklahoma, Tornado: Damage survey and analysis. Weather and Forecasting, 29, 1229–1237.

    Article  Google Scholar 

  • Carlin, J., Ryzhkov, A., Snyder, J., & Khain, A. (2016). Hydrometeor mixing ratio retrievals for strom-scale radar data assimilation: Utility of current equations and potential benefits of polarimetry. Monthly Weather Review, 144, 2981–3001.

    Article  Google Scholar 

  • Conway, J., & Zrnic, D. (1993). A study of embryo production and hail growth using dual-Doppler and multiparameter radars. Monthly Weather Review, 121, 2511–2528.

    Article  Google Scholar 

  • Dawson, D., Mansell, E., Jung, Y., Wicker, L., Kumjian, M., & Xue, M. (2014). Low-level ZDR signatures in supercell forward flanks: The role of size sorting and melting of hail. Journal of the Atmospheric Sciences, 71, 276–299.

    Article  Google Scholar 

  • Entremont, C., & Lamb, D. (2014). Relationship between tornado debris signature (TDS) height and tornado intensity. Training Material for Forecasters. https://slideplayer.com/slide/8421932/

  • Feral, L., Sauvageot, H., & Soula, S. (2003). Hail detection using S- and C-band radar reflectivity difference. Journal of Atmospheric and Oceanic Technology, 20, 233–248.

    Article  Google Scholar 

  • Gao, J., Xue, M., Brewster, K., & Droegemeier, K. (2004). A three-dimensional variational data analysis method with recursive filter for Doppler radars. Journal of Atmospheric and Oceanic Technology, 21, 457–469.

    Article  Google Scholar 

  • Gu, J.-Y., Ryzhkov, A., Zhang, P., Neilley, P., Knight, M., Wolf, B., & Lee, D.-I. (2011). Polarimetric attenuation correction in heavy rain at C band. Journal of Applied Meteorology, 50, 39–58.

    Article  Google Scholar 

  • Holler, H., Bringi, V., Hubbert, J., Hagen, M., & Meischner, P. (1994). Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. Journal of the Atmospheric Sciences, 51, 2500–2522.

    Article  Google Scholar 

  • Houze, R. (1993). Cloud dynamics (p. 573). Amsterdam, Netherlands: Academic Press.

    Google Scholar 

  • Houze, R., Rutledge, S., Biggerstaff, M., & Smuul, B. (1989). Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bulletin of the American Meteorological Society, 70, 608–619.

    Article  Google Scholar 

  • Hubbert, J., Bringi, V., Carey, L., & Bolen, S. (1998). CSU-CHILL polarimetric radar measurements from a severe hail storm in eastern Colorado. Journal of Applied Meteorology, 37, 749–775.

    Article  Google Scholar 

  • Illingworth, A., Goddard, J., & Cherry, S. (1987). Polarization radar studies of precipitation development in convective storms. Quarterly Journal of the Royal Meteorological Society, 113, 469–489.

    Article  Google Scholar 

  • Ilotoviz, E., Benmoshe, N., Khain, A., Phillips, V., & Ryzhkov, A. (2016). Effect of aerosols on freezing drops, hail, and precipitation in a mid-latitude storm. Journal of the Atmospheric Sciences, 73, 109–144.

    Article  Google Scholar 

  • Ilotoviz, E., Khain, A., Ryzhkov, A., & Snyder, J. (2018). Relationship between aerosols, hail microphysics, and ZDR columns. Journal of the Atmospheric Sciences, 75, 1755–1781.

    Article  Google Scholar 

  • Johnson, M., Jung, Y., Dawson, D., & Xue, M. (2016). Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Monthly Weather Review, 144, 971–996.

    Article  Google Scholar 

  • Jung, Y., Xue, M., & Zhang, G. (2010). Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. Journal of Applied Meteorology and Climatology, 49, 146–163.

    Article  Google Scholar 

  • Jung, Y., Zhang, G., & Xue, M. (2008). Assimilation of simulated polarimetric radar data for a convective storm using the Ensemble Kalman Filter. Part I: Observation operators for reflectivity and polarimetric variables. Monthly Weather Review, 136, 2228–2245.

    Article  Google Scholar 

  • Kaltenboeck, R., & Ryzhkov, A. (2013). Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmospheric Research, 123, 323–336.

    Article  Google Scholar 

  • Kennedy, P., Rutledge, S., Dolan, B., & Thaller, E. (2014). Observations of the 14 July 2011 Fort Collins hailstorm: Implications for WSR-88D-based hail detection and warnings. Weather and Forecasting, 29, 623–638.

    Article  Google Scholar 

  • Kennedy, P., Rutledge, S., Petersen, W., & Bringi, V. (2001). Polarimetric radar observations of hail formation. Journal of Applied Meteorology, 40, 1347–1366.

    Article  Google Scholar 

  • Khain, A., & Pinsky, M. (2018). Physical processes in clouds and cloud modeling (p. 686). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A., & Phillips, V. (2004). Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. Journal of the Atmospheric Sciences, 61, 2963–2982.

    Article  Google Scholar 

  • Khain, A., Rosenfeld, D., Pokrovsky, A., Blahak, U., & Ryzhkov, A. (2011). The role of CCN in precipitation and hail in a midlatitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmospheric Research, 99, 129–146.

    Article  Google Scholar 

  • Kumjian, M. (2011). Precipitation properties of supercell hook echoes. Electronic Journal of Severe Storms Meteorology, 6(5), 1–21 Retrieved from https://ejssm.org/ojs/index,php/ejssm/issue/view/30.

    Google Scholar 

  • Kumjian, M. (2013). Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. Journal of Operational Meteorology, 1(20), 243–264.

    Article  Google Scholar 

  • Kumjian, M., Khain, A., Benmoshe, N., Ilotoviz, E., Ryzhkov, A., & Phillips, V. (2014). The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. Journal of Applied Meteorology and Climatology, 53, 1820–1843.

    Article  Google Scholar 

  • Kumjian, M., & Ryzhkov, A. (2009). Storm-relative helicity revealed from polarimetric radar measurements. Journal of the Atmospheric Sciences, 66, 667–685.

    Article  Google Scholar 

  • Kumjian, M., Ryzhkov, A., Melnikov, V., & Schuur, T. (2010). Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Monthly Weather Review, 138, 3762–3786.

    Article  Google Scholar 

  • Kumjian, M. R., & Ryzhkov, A. (2008). Polarimetric signatures in supercell storms. Journal of Applied Meteorology and Climatology, 47, 1940–1961.

    Article  Google Scholar 

  • Kurdzo, J., Bodine, D., Cheong, B.-L., & Palmer, R. (2015). High-temporal resolution polarimetric X-band Doppler radar observations of the 20 May 2013 Moore, Oklahoma, tornado. Monthly Weather Review, 143, 2711–2735.

    Article  Google Scholar 

  • Loney, M., Zrnic, D., Straka, J., & Ryzhkov, A. (2002). Enhanced polarimetric signatures above the melting level in a supercell storm. Journal of Applied Meteorology, 41, 1179–1194.

    Article  Google Scholar 

  • Mansel, E. (2010). On sedimentation and advection in multimoment bulk microphysics. Journal of the Atmospheric Sciences, 67, 3084–3094.

    Article  Google Scholar 

  • Markowski, P., & Richardson, Y. (2010). Mesoscale meteorology in midlatitudes (p. 407). Chichester, UK: Wiley.

    Book  Google Scholar 

  • Mildbrand, J., & Yau, M. (2005). A multimoment bulk microphysical parameterization. Part II: A proposed three-moment closure and scheme description. Journal of the Atmospheric Sciences, 62, 3065–3081.

    Article  Google Scholar 

  • Ortega, K., Krause, J., & Ryzhkov, A. (2016). Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. Journal of Applied Meteorology and Climatology, 55, 829–848.

    Article  Google Scholar 

  • Palmer, R., Bodine, D., Kumjian, M., Cheong, B., Zhang, G., Cao, Q., Bluestein, H., Ryzhkov, A., Yu, T., & Wang, Y. (2011). Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bulletin of the American Meteorological Society, 92, 871–891.

    Article  Google Scholar 

  • Payne, C., Schuur, T., MacGorman, D., Biggerstaff, M., Kumjian, M., & Rust, W. (2010). Polarimetric and electrical characteristics of a lightning ring in a supercell storm. Monthly Weather Review, 138, 2405–2425.

    Article  Google Scholar 

  • Picca, J., & Ryzhkov, A. (2012). A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Monthly Weather Review, 140, 1385–1403.

    Article  Google Scholar 

  • Romine, G., Burgess, D., & Wilhelmson, R. (2008). A dual-polarization-radar -based assessment of the 8 May 2003 Oklahoma City area tornadic supercell. Monthly Weather Review, 136, 2849–2870.

    Article  Google Scholar 

  • Ryzhkov, A., Burgess, D., Zrnic, D., Smith, T., & Giangrande, S. (2002). Polarimetric analysis of a 3 May 1999 Tornado. Preprints, 21 Conference on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 14.2. Retrieved from https://ams.confex.com/ams/pdfpapers/47348.pdf

  • Ryzhkov, A., Kumjian, M., Ganson, S., & Khain, A. (2013a). Polarimetric radar characteristics of melting hail. Pt I: Theoretical simulations using spectral microphysical modeling. Journal of Applied Meteorology and Climatology, 52, 2849–2870.

    Article  Google Scholar 

  • Ryzhkov, A., Kumjian, M., Ganson, S., & Zhang, P. (2013b). Polarimetric radar characteristics of melting hail. Pt II: Practical implications. Journal of Applied Meteorology and Climatology, 52, 2871–2886.

    Article  Google Scholar 

  • Ryzhkov, A., Matrosov, S., Melnikov, V., Zrnic, D., Zhang, P., Cao, Q., Knight, M., Simmer, C., & Troemel, S. (2017). Estimation of depolarization ratio using radars with simultaneous transmission/reception. Journal of Applied Meteorology and Climatology, 56, 1797–1816.

    Article  Google Scholar 

  • Ryzhkov, A., Pinsky, M., Pokrovsky, A., & Khain, A. (2011). Polarimetric radar observation operator for a cloud model with spectral microphysics. Journal of Applied Meteorology and Climatology, 50, 873–894.

    Article  Google Scholar 

  • Ryzhkov, A., Schuur, T., Burgess, D., & Zrnic, D. (2005). Polarimetric tornado detection. Journal of Applied Meteorology, 44, 557–570.

    Article  Google Scholar 

  • Ryzhkov, A., & Zrnic, D. (1995). Precipitation and attenuation measurements at a 10 cm wavelength. Journal of Applied Meteorology, 34, 2121–2134.

    Article  Google Scholar 

  • Ryzhkov, A., Zrnic, D., Zhang, P., Krause, J., Park, H., Hudak, D., et al. (2007). Comparison of polarimetric algorithms for hydrometeor classification at S and C bands. In Extended Abstracts, 33rd Conference Radar Meteorology, Cairns, Australia, Amer. Meteor. Soc., 10.3. Retrieved from http://ams.confex.com/ams/pds/papers/123109.pdf

  • Scharfenberg, K., Miller, D., Schuur, T., Schlatter, P., Giangrande, S., Melnikov, V., et al. (2005). The Joint Polarization Experiment: Polarimetric radar in forecasting and warning decision making. Weather and Forecasting, 20, 775–788.

    Google Scholar 

  • Schultz, C., Nelson, S., Carey, L., Belanger, C., Carcione, B., Darden, C., et al. (2012a). Dual-polarization tornadic debris signatures. Part I: Examples and utility in an operational setting. Electronic Journal of Operational Meteorology, 13(9), 120–137.

    Google Scholar 

  • Schultz, C., Nelson, S., Carey, L., Belanger, L., Carcione, B., Darden, C., et al. (2012b). Dual-polarization tornadic debris signatures. Part II: Comparisons and caveats. Electronic Journal of Operational Meteorology, 13(10), 138–150.

    Google Scholar 

  • Snyder, J., & Bluestein, H. (2014). Some considerations for the use of high-resolution mobile radar data in tornado intensity determination. Weather and Forecasting, 29, 799–827.

    Article  Google Scholar 

  • Snyder, J., Bluestein, H., Dawson, D., & Jung, Y. (2017a). Simulations of polarimetric, X-band radar signatures in supercells. Part I: Description of experiment and simulated ρhv rings. Journal of Applied Meteorology and Climatology, 56, 1977–1999.

    Article  Google Scholar 

  • Snyder, J., Bluestein, H., Dawson, D., & Jung, Y. (2017b). Simulations of polarimetric, X-band radar signatures in supercells. Part II: ZDR columns and rings and KDP columns. Journal of Applied Meteorology and Climatology, 56, 2001–2026.

    Article  Google Scholar 

  • Snyder, J., Bluestein, H., Venkatesh, V., & Frasier, S. (2013). Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Monthly Weather Review, 141, 3–29.

    Article  Google Scholar 

  • Snyder, J., Ryzhkov, A., Kumjian, M., Picca, J., & Khain, A. (2015). Developing a ZDR column detection algorithm to examine convective storm updrafts. Weather and Forecasting, 30, 1819–1844.

    Article  Google Scholar 

  • Tabary, P., Fradon, B., Illingworth, A.J., & Vulpiani, G. (2009). Hail detection and quantification with a C-band polarimetric radar: Challenges and promises. In Extended Abstracts, 34th Conference on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 10A.4. Retrieved from http://ams.confex.com/ams/34Radar/techprogram/paper_155530.htm

  • Tessendorf, S., Miller, J., Wiens, K., & Rutledge, S. (2005). The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. Journal of the Atmospheric Sciences, 62, 4127–4150.

    Article  Google Scholar 

  • Van Den Broeke, M., & Jauernic, S. (2014). Spatial and temporal characteristics of polarimetric tornadic debris signatures. Journal of Applied Meteorology and Climatology, 53, 2217–2231.

    Article  Google Scholar 

  • Van Den Broeke, M., Straka, J., & Rasmussen, E. (2008). Polarimetric radar observations at low levels during tornado life cycles in a small sample of classic southern plains supercells. Journal of Applied Meteorology and Climatology, 47, 1232–1247.

    Article  Google Scholar 

  • Van Lier-Walqui, M., Fridlind, A., Helmus, A., MacGorman, D., North, K., Kollias, P., & Posselt, D. (2016). On polarimetric radar signatures of deep convection for model evaluation: Columns of specific differential phase observed during MC3E. Monthly Weather Review, 144, 737–758.

    Article  Google Scholar 

  • Wurman, J., Kosiba, K., Robinson, P., & Marshall, T. (2014). The role of multiple-vortex tornado structure in causing storm researcher fatalities. Bulletin of the AMS, 95, 31–45.

    Google Scholar 

  • Xue, G., Wang, D., Gao, J., Brewster, K., & Droegemeier, K. (2003). The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorology and Atmospheric Physics, 82, 139–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryzhkov, A.V., Zrnic, D.S. (2019). Polarimetric Characteristics of Deep Convective Storms. In: Radar Polarimetry for Weather Observations. Springer Atmospheric Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-05093-1_8

Download citation

Publish with us

Policies and ethics