Advertisement

Polarimetric “Fingerprints” of Different Microphysical Processes in Clouds and Precipitation

  • Alexander V. Ryzhkov
  • Dusan S. Zrnic
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Polarimetric characteristics of hydrometeors reflect ongoing microphysical processes in clouds and precipitation. The chapter describes basic microphysical processes and their influence on the evolution of hydrometeors and associated polarimetric radar variables. Some processes have unique polarimetric signatures or “fingerprints,” and examples of these are given here. The examined microphysical processes involve liquid cloud drops, raindrops, mixed-phase particles, and ice particles. Rain processes include condensation, evaporation, coalescence, breakup, and size sorting. Ice and mixed-phase processes include depositional growth, sublimation, riming, aggregation, freezing/refreezing, and melting.

Keywords

Microphysical processes Polarimetric signatures Condensation Evaporation Coalescence Breakup Size sorting Depositional growth Sublimation Riming Aggregation Freezing/refreezing Melting 

References

  1. Andrić, J., Kumjian, M., Zrnić, D., Straka, J., & Melnikov, V. (2013). Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. Journal of Applied Meteorology and Climatology, 52, 682–700.Google Scholar
  2. Atlas, D., & Ulbrich, C. (1977). Path- and area-integrated rainfall measurement by microwave attenuation in the 1 – 3 cm band. Journal of Applied Meteorology, 16, 1322–1331.Google Scholar
  3. Aydin, K., Giridhar, V., & Zhao, Y. (1991). Polarimetric C-band radar observables in melting hail: A computational study. In Preprints. 25th International Conference on Radar Meteorology. Paris (pp. 733–736).Google Scholar
  4. Aydin, K., & Zhao, Y. (1990). A computational study of polarimetric radar observables in hail. IEEE Transactions on Geoscience and Remote Sensing, 28, 412–422.Google Scholar
  5. Bailey, M., & Hallett, J. (2009). A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. Journal of the Atmospheric Sciences, 27, 919–926.Google Scholar
  6. Barthazy, E., Henrich, W., & Waldvogel, A. (1998). Size distribution of hydrometeors through the melting layer. Atmospheric Research, 47–48, 193–208.Google Scholar
  7. Battaglia, A., Kummerow, C., Shin, D., & Williams, C. (2003). Constraining microwave brightness temperatures by radar brightband observations. Journal of Atmospheric and Oceanic Technology, 20, 856–871.Google Scholar
  8. Bechini, R., Baldini, L., & Chandrasekar, V. (2013). Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. Journal of Applied Meteorology and Climatology, 52, 1147–1169.Google Scholar
  9. Bigg, E. (1953a). The supercooling of water. Proceedings of the Physical Society. Section B, 66, 88–694.Google Scholar
  10. Bigg, E. (1953b). The formation of atmospheric ice crystals by the freezing of droplets. Quarterly Journal of the Royal Meteorological Society, 79, 510–519.Google Scholar
  11. Borowska, L., Ryzhkov, A., Zrnić, D., Simmer, C., & Palmer, R. (2011). Attenuation and differential attenuation of the 5-cm-wavelength radiation in melting hail. Journal of Applied Meteorology and Climatology, 50, 59–76.Google Scholar
  12. Brandes, E., Ikeda, K., Zhang, G., Schoenhuber, M., & Rasmussen, R. (2007). A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video-disdrometer. Journal of Applied Meteorology, 46, 634–650.Google Scholar
  13. Brandes, E. A., & Ikeda, K. (2004). Freezing-level estimation with polarimetric radar. Journal of Applied Meteorology, 43, 1541–1543.Google Scholar
  14. Brandes, E., Zhang, G., & Vivekanandan, J. (2002). Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. Journal of Applied Meteorology, 41, 674–685.Google Scholar
  15. Carlin, J. (2018). The use of polarimetric radar data for informing numerical weather prediction models. PhD thesis. University of Oklahoma. 252 p.Google Scholar
  16. Carras, J. N., & Macklin, W. C. (1973). The shedding of accreted water during hailstone growth. Quarterly Journal of the Royal Meteorological Society, 99, 639–648.Google Scholar
  17. Chen, J.-P., & Lamb, D. (1994). The theoretical basis for the parameterization of ice crystal habits: Growth by water deposition. Journal of the Atmospheric Sciences, 51, 1206–1221.Google Scholar
  18. Cheng, L., & English, M. (1983). A relationship between hailstone concentration and size. Journal of the Atmospheric Sciences, 40, 204–213.Google Scholar
  19. Cheng, L., English, M., & Wong, R. (1985). Hailstone size distributions and their relationship to storm thermodynamics. Journal of Climate and Applied Meteorology, 24, 1059–1067.Google Scholar
  20. D’Amico, M., Holt, A., & Capsoni, C. (1998). An anisotropic model of the melting layer. Radio Science, 33, 535–552.Google Scholar
  21. Dawson, D., Mansell, E., & Kumjian, M. (2015). Does wind shear cause hydrometeor size sorting? Journal of the Atmospheric Sciences, 72, 340–348.Google Scholar
  22. Dawson, D., Xue, M., Milbrandt, J., & Yau, M. (2010). Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysical schemes in idealized simulations of tornadic thunderstorms. Monthly Weather Review, 138, 1152–1171.Google Scholar
  23. Erfani, E., & Mitchell, D. (2017). Growth of ice particle mass and projected area during riming. Atmospheric Chemistry and Physics, 17, 1241–1257.Google Scholar
  24. Fabry, F., & Szyrmer, W. (1999). Modeling the melting layer. Part II: Electromagnetic. Journal of the Atmospheric Sciences, 56, 3593–3600.Google Scholar
  25. Fabry, F., & Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and their interpretation. Journal of the Atmospheric Sciences, 52, 838–851.Google Scholar
  26. Fukuta, N., & Takahashi, T. (1999). The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. Journal of the Atmospheric Sciences, 56, 1963–1979.Google Scholar
  27. Giangrande, S. (2007). Investigation of polarimetric measurements of rainfall at close and distant ranges. PhD thesis, University of Oklahoma, 236 p.Google Scholar
  28. Giangrande, S., Toto, T., Bansemer, A., Kumjian, M., Mishra, S., & Ryzhkov, A. (2016). Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event. Journal of Geophysical Research, 121, 5846–5863.Google Scholar
  29. Goeke, S., & Waldvogel, A. (1998). Studies of snowflake aggregation efficiencies within the melting layer. In Preprints, Conference on Cloud Physics (pp. 458–461), Everett, WA, American Meteor Society.Google Scholar
  30. Grazioli, J., Lloyd, G., Panziera, L., Hoyle, C., Connoly, P., Henneberger, J., et al. (2015). Polarimetric radar and in situ observations of riming and snowfall microphysics during CLACE 2014. Atmospheric Chemistry and Physics, 15, 13787–13802.Google Scholar
  31. Griffin, E., Schuur, T., & Ryzhkov, A. (2018). A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. Journal of Applied Meteorology and Climatology, 57, 31–50.Google Scholar
  32. Gunn, K., & Marshall, S. (1955). The effect of wind shear on falling precipitation. Journal of Meteorology, 12, 339–449.Google Scholar
  33. Hallett, J., & Mossop, S. (1974). Production of secondary ice particles during the riming process. Nature, 249, 26–28.Google Scholar
  34. Heymsfield, A., Bansemer, A., Poellot, M., & Wood, N. (2015). Observations of ice microphysics through the melting layer. Journal of the Atmospheric Sciences, 72, 2902–2928.Google Scholar
  35. Joe, P., List, R., Kry, P., de Quervain, M., Lui, P., Stagg, P., et al. (1976). Loss of accreted water from a growing hailstone. In Proceedings of the International Cloud Physics Conference (pp. 264–269), Boulder, CO.Google Scholar
  36. Johnson, D., & Hallett, J. (1968). Freezing and shattering of supercooled water drops. Quarterly Journal of the Royal Meteorological Society, 94, 468–482.Google Scholar
  37. Jung, Y., Xue, M., & Zhang, G. (2010). Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysical scheme. Journal of Applied Meteorology and Climatology, 49, 146–163.Google Scholar
  38. Jung, Y., Zhang, G., & Xue, M. (2008). Assimilation of simulated polarimetric radar data for a convective storm using the Ensemble Kalman Filter. Part I: Observation operators for reflectivity and polarimetric variables. Monthly Weather Review, 136, 2228–2245.Google Scholar
  39. Kaltenboeck, R., & Ryzhkov, A. (2013). Comparison of polarimetric signatures of hail at S and C bands for different hail sizes. Atmospheric Research, 123, 323–336.Google Scholar
  40. Kennedy, P. C., & Rutledge, S. A. (2011). S-band dual-polarization radar observations of winter storms. Journal of Applied Meteorology and Climatology, 50, 844–858.Google Scholar
  41. Khain, A., & Pinsky, M. (2018). Physical processes in clouds and cloud modeling (Vol. 686). Cambridge, UK: Cambridge University Press.Google Scholar
  42. Khain, A., Pokrovsky, A., Rosenfeld, D., Blahak, U., & Ryzhkov, A. (2011). The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmospheric Research, 99, 129–146.Google Scholar
  43. Klaasen, W. (1988). Radar observation and simulation of the melting layer of precipitation. Journal of the Atmospheric Sciences, 45, 3741–3753.Google Scholar
  44. Kumjian, M. (2012). The impact of precipitation physical processes on the polarimetric radar variables. PhD Thesis, University of Oklahoma.Google Scholar
  45. Kumjian, M., Ganson, S., & Ryzhkov, A. (2012). Freezing of raindrops in deep convective storms: A microphysical and polarimetric model. Journal of the Atmospheric Sciences, 69, 3471–3490.Google Scholar
  46. Kumjian, M., Khain, A., Benmoshe, N., Ilotoviz, E., Ryzhkov, A., & Phillips, V. (2014). The anatomy and physics of ZDR columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. Journal of Applied Meteorology and Climatology, 53, 1820–1843.Google Scholar
  47. Kumjian, M., Mishra, S., Giangrande, S., Toto, T., Ryzhkov, A., & Bansemer, A. (2016). Polarimetric radar and aircraft observations of saggy bright band during MC3E. Journal of Geophysical Research-Atmospheres, 121, 3584–3607.Google Scholar
  48. Kumjian, M., & Prat, O. (2014). The impact of raindrop collisional processes on the polarimetric radar variables. Journal of the Atmospheric Sciences, 71, 3052–3067.Google Scholar
  49. Kumjian, M., & Ryzhkov, A. (2009). Storm-relative helicity revealed from polarimetric radar measurements. Journal of the Atmospheric Sciences, 66, 667–685.Google Scholar
  50. Kumjian, M., & Ryzhkov, A. (2010). The impact of evaporation on polarimetric characteristics of rain. Theoretical model and practical implications. Journal of Applied Meteorology and Climatology, 49, 1247–1267.Google Scholar
  51. Kumjian, M., & Ryzhkov, A. (2012). The impact of size sorting on the polarimetric radar variables. Journal of the Atmospheric Sciences, 69, 2042–2060.Google Scholar
  52. Kumjian, M., Ryzhkov, A., Reeves, H., & Schuur, T. (2013). Dual-polarization radar observations of hydrometeor refreezing in winter storms. Journal of Applied Meteorology and Climatology, 52, 2549–2566.Google Scholar
  53. Lamb, D., & Verlinde, J. (2011). Physics and chemistry of clouds (p. 584). Cambridge, UK: Cambridge University Press.Google Scholar
  54. Lesins, G. B., List, R., & Joe, P. I. (1980). Ice accretions. Part I: Testing of new atmospheric icing concepts. Journal de Recherches Atmospheriques, 14, 347–356.Google Scholar
  55. Marshall, J. (1953). Precipitation trajectories and patterns. Journal of Meteorology, 10, 25–29.Google Scholar
  56. Matrosov, S. Y., Mace, G. G., Marchand, R., Shupe, M. D., Hallar, A. G., & Mc Cubbin, I. B. (2012). Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratios mode. Journal of Atmospheric and Oceanic Technology, 29, 989–1008.Google Scholar
  57. Matrosov, S. Y., Reinking, R. F., Kropfli, R. A., Martner, B. E., & Bartram, B. W. (2001). On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. Journal of Applied Meteorology, 40, 479–490.Google Scholar
  58. Moisseev, D., Lautaportti, S., Tyynela, J., & Lim, S. (2016). Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. Journal of Geophysical Research-Atmospheres, 121, 12644–12655.Google Scholar
  59. Moisseev, D., von Lerber, A., & Tiira, J. (2017). Quantifying the effect of riming on snowfall using ground-based observations. Journal of Geophysical Research – Atmospheres, 122, 4019–4037.Google Scholar
  60. Mosimann, L., Weingartner, E., & Waldvogel, A. (1994). An analysis of accreted drop sizes and mass on rimed snow crystals. Journal of the Atmospheric Sciences, 51, 1548–1558.Google Scholar
  61. Olson, W., Bauer, P., Viltard, N., Johnson, D., Tao, W., Meneghini, R., et al. (2001). A melting-layer model for passive-active microwave remote sensing applications. Part I: Model formulation and comparison with observations. Journal of Applied Meteorology, 40, 1145–1163.Google Scholar
  62. Ortega, K., Krause, J., & Ryzhkov, A. (2016). Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. Journal of Applied Meteorology and Climatology, 55, 829–848.Google Scholar
  63. Oue, M., Galletti, M., Verlinde, J., Ryzhkov, A., Lu, Y., & Bharadwaj, N. (2016). Use of X-band differential reflectivity measurements to study shallow Arctic mixed-phase clouds. Journal of Applied Meteorology and Climatology, 55, 403–424.Google Scholar
  64. Phillips, V., Khain, A., Benmoshe, N., Ilotoviz, E., & Ryzhkov, A. (2015). Theory of time-dependent freezing. Part II. Scheme for freezing raindrops and simulations by a cloud model with spectral bin microphysics. Journal of the Atmospheric Sciences, 72, 262–286.Google Scholar
  65. Phillips, V., Khain, A., & Pokrovsky, A. (2007). The influence of melting on the dynamics and precipitation production in maritime and continental storm clouds. Journal of the Atmospheric Sciences, 64, 338–359.Google Scholar
  66. Picca, J., & Ryzhkov, A. (2012). A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Monthly Weather Review, 140, 1385–1403.Google Scholar
  67. Pruppacher, H., & Klett, J. (1997). Microphysics of clouds and precipitation (2nd ed., p. 976). Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
  68. Rasmussen, R., & Heymsfield, A. (1987). Melting and shedding of graupel and hail. Part I: Model physics. Journal of the Atmospheric Sciences, 44, 2754–2763.Google Scholar
  69. Rasmussen, R., Levizzani, V., & Pruppacher, H. (1984). A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. Part III: Experiment and theory for spherical ice particles of radius > 500 μm. Journal of the Atmospheric Sciences, 41, 381–388.Google Scholar
  70. Reeves, H., Ryzhkov, A., & Krause, J. (2016). Discrimination between winter precipitation types based on spectral-bin microphysical modeling. Journal of Applied Meteorology and Climatology, 55, 1747–1761.Google Scholar
  71. Rogers, R., & Yau, M. (1989). A short course in cloud physics. New York: Pergamon Press.Google Scholar
  72. Russchenberg, H., & Ligthart, L. (1996). Backscattering by and propagation through the melting layer of precipitation: A new polarimetric model. IEEE Transactions on Geoscience and Remote Sensing, 34, 3–14.Google Scholar
  73. Ryzhkov, A., Giangrande, S., Khain, A., Pinsky, M., & Pokrovsky, A. (2008). Exploring model-based polarimetric retrieval of vertical profiles of precipitation. In Extended Abstracts, 5th European Conference on Radar in Meteorology and Hydrology, Helsinki, Finland, CD-ROM, P6.1.Google Scholar
  74. Ryzhkov, A., Kumjian, M., Ganson, S., & Khain, A. (2013a). Polarimetric radar characteristics of melting hail. Pt I: Theoretical simulations using spectral microphysical modeling. Journal of Applied Meteorology and Climatology, 52, 2849–2870.Google Scholar
  75. Ryzhkov, A., Kumjian, M., Ganson, S., & Zhang, P. (2013b). Polarimetric radar characteristics of melting hail. Pt II: Practical implications. Journal of Applied Meteorology and Climatology, 52, 2871–2886.Google Scholar
  76. Ryzhkov, A., Pinsky, M., Pokrovsky, A., & Khain, A. (2011). Polarimetric radar observation operator for a cloud model with spectral microphysics. Journal of Applied Meteorology and Climatology, 50, 873–894.Google Scholar
  77. Ryzhkov, A., Reeves, H., Krause, J., & Burcham, H. (2014). Discrimination between winter precipitation types based on explicit microphysical modeling of melting and refreezing in the polarimetric hydrometeor classification algorithm. In Extended abstracts. 8th European Conference on Radar in Meteorology and Hydrology, Garmisch-Partenkirchen, Germany, MIC.P07.Google Scholar
  78. Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T., Troemel, S., et al. (2016). Quasi-vertical profiles – a new way to look at polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 33, 551–562.Google Scholar
  79. Schrom, R. S., Kumjian, M. R., & Lu, Y. (2015). Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. Journal of Applied Meteorology and Climatology, 54, 2365–2388.Google Scholar
  80. Schuur, T., Ryzhkov, A., & Clabo, D. (2005). Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. Preprints, 32nd Conference on Radar Meteorology., CD-ROM, 15R.4Google Scholar
  81. Sinclair, V., Moisseev, D., & von Lerber, A. (2016). How dual-polarization radar observations can be used to verify model representation of secondary ice. Journal of Geophysical Research – Atmospheres, 121, 10954–10970.Google Scholar
  82. Smith, P., Musil, D., Weber, S., Spahn, J., Johnson, G., & Sand, W. (1976). Raindrop and hailstone distributions inside hailstorms. In Preprints. International Conference on Cloud Physics (pp. 252–257), Boulder, CO.Google Scholar
  83. Spahn, J., & Smith, P. (1976). Some characteristics of hailstone size distributions inside hailstorms. In Preprints. 17th Conference on Radar Meteorology (pp. 187–191), Seattle, WA.Google Scholar
  84. Straka, J. (2009). Cloud and precipitation microphysics. Principles and parameterizations (p. 392). Cambridge, UK: Cambridge University Press.Google Scholar
  85. Szyrmer, W., & Zawadzki, I. (1999). Modeling of the melting layer. Part I: Dynamics and microphysics. Journal of the Atmospheric Sciences, 56, 3573–3592.Google Scholar
  86. Takahashi, T., Endoh, T., Wakaham, G., & Fukuta, N. (1991). Vapor diffusional growth of free-falling snow crystals between -3 and -23°C. Journal of the Meteorological Society of Japan, 69, 15–30.Google Scholar
  87. Tobin, D., & Kumjian, M. (2017). Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Weather and Forecasting, 32, 2065–2082.Google Scholar
  88. Troemel, S., Ryzhkov, A., Bick, T., Muhlbauer, K., & Simmer, C. (2017). Towards nowcasting of winter precipitation: The Black Ice Event in Berlin 2014. Meteorologische Zeitschrift, 26, 147–160.Google Scholar
  89. Troemel, S., Ryzhkov, A., Zhang, P., & Simmer, C. (2014). Investigations of backscatter differential phase in the melting layer. Journal of Applied Meteorology and Climatology, 53, 2344–2359.Google Scholar
  90. Ulbrich, C., & Atlas, D. (1982). Hail parameter relations: A comprehensive digest. Journal of Applied Meteorology, 21, 22–43.Google Scholar
  91. Vivekanandan, J., Bringi, V., & Raghavan, R. (1990). Multiparameter radar modeling and observation of melting ice. Journal of the Atmospheric Sciences, 47, 549–563.Google Scholar
  92. Vogel, J., Fabry, F., & Zawadzki, I. (2015). Attempts to observe polarimetric signatures of riming in stratiform precipitation. In 37th Conference on Radar Meteorology, Norman, OK, American Meteor Society, 6B.6. Retrieved from https://ams.confex.com/ams/37RADAR/webprogram/Paper275246.html
  93. Wang, Y., Zhang, J., Ryzhkov, A., & Tang, L. (2013). C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. Journal of Atmospheric and Oceanic Technology, 30, 1354–1370.Google Scholar
  94. Westbrook, C., & Heymsfield, A. (2011). Ice crystals growing from vapor in supercooled clouds between -2.5° and -22°C: Testing current parameterization methods using laboratory data. Journal of the Atmospheric Sciences, 68, 2416–2429.Google Scholar
  95. Williams, E., Smalley, D., Donovan, M., Hallowell, R., Hood, K., Bennett, B., et al. (2015). Measurements of differential reflectivity in snowstorms and warm season stratiform systems. Journal of Applied Meteorology and Climatology, 54, 573–595.Google Scholar
  96. Xie, X., Evaristo, R., Troemel, S., Saavedra, P., Simmer, C., & Ryzhkov, A. (2016). Radar observation of evaporation and implications for quantitative precipitation and cooling rate estimation. Journal of Atmospheric and Oceanic Technology, 33, 1779–1792.Google Scholar
  97. Yokoyama, T., & Tanaka, H. (1984). Microphysical processes of melting snowflakes detected by two-wavelength radar. Part I: Principle of measurement based on model calculation. Journal of the Meteorological Society of Japan, 62, 650–666.Google Scholar
  98. Zawadzki, I., Jung, E., & Lee, G. (2010). Snow studies. Part I: A study of natural variability of snow terminal velocity. Journal of the Atmospheric Sciences, 67, 1591–1604.Google Scholar
  99. Zawadzki, I., Szyrmer, W., Bell, C., & Fabry, F. (2005). Modeling of the melting layer. Part III: The density effect. Journal of the Atmospheric Sciences, 62, 3705–3723.Google Scholar
  100. Zhang, G., Luchs, S., Ryzhkov, A., Xue, M., Ryzhkova, L., & Cao, Q. (2011). Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. Journal of Applied Meteorology and Climatology, 50, 1558–1570.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander V. Ryzhkov
    • 1
  • Dusan S. Zrnic
    • 2
  1. 1.Cooperative Institute for Mesoscale Meteorological StudiesThe University of OklahomaNormanUSA
  2. 2.National Severe Storms Laboratory, National Oceanic and Atmospheric AdministrationNormanUSA

Personalised recommendations