Advertisement

Polarimetric Variables

  • Alexander V. Ryzhkov
  • Dusan S. Zrnic
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Polarimetric variables corresponding to various hydrometeor types are discussed and quantified in this chapter. Considered polarimetric variables are reflectivity factors at horizontal and vertical polarizations (ZH and ZV), differential reflectivity ZDR, cross-correlation coefficient ρhv, total differential phase ΦDP, specific differential phase KDP, backscatter differential phase δ, linear depolarization ratio LDR, circular depolarization ratio CDR, specific attenuation A, and specific differential attenuation ADP. Presented are the physical meaning of these variables and their dependencies on the primary microphysical properties of hydrometeors such as size, concentration, shape, orientation, and physical composition. These dependencies are quantified with relatively simple formulas for smaller particles using Rayleigh approximation or T-matrix simulations for hydrometeors of larger size. The overview is given for liquid- (raindrops), solid- (ice, snow), and mixed-phase (melting ice/snow) hydrometeors at the S, C, and X microwave frequency bands commonly utilized for operational polarimetric radars.

Keywords

Polarimetric variables Reflectivity factor Differential reflectivity Differential phase Cross-correlation coefficient Linear depolarization ratio Circular depolarization ratio Specific attenuation Specific differential phase T-matrix Frequency bands S, C, X 

References

  1. Al-Jumily, K., Charlton, R., & Humphries, R. (1991). Identification of rain and hail with circular polarization radar. Journal of Applied Meteorology, 30, 1075–1087.CrossRefGoogle Scholar
  2. Aydin, K., & Zhao, Y. (1990). A computational study of polarimetric radar observables in hail. IEEE Transactions on Geoscience and Remote Sensing, 28, 412–422.CrossRefGoogle Scholar
  3. Aydin, K., Giridhar, V., & Zhao, Y. (1991). Polarimetric C-band radar observables in melting hail: A computational study. In Preprints. 25th International Radar Conference on Radar Meteorology, Paris (pp. 733–736).Google Scholar
  4. Balakrishnan, N., & Zrnic, D. (1990). Estimation of rain and hail rates in mixed-phase precipitation. Journal of the Atmospheric Sciences, 47, 565–583.CrossRefGoogle Scholar
  5. Barber, P., & Yeh, C. (1975). Scattering of electromagnetic waves by arbitrary shaped dielectric bodies. Applied Optics, 14, 2684–2872.CrossRefGoogle Scholar
  6. Barge, B. (1974). Polarization measurements of precipitation backscatter in Alberta. Journal de Recherches Atmospheriques, 8, 163–173.Google Scholar
  7. Battan, L. J. (1973). Radar observation of the atmosphere. Chicago, IL: University of Chicago Press. 324 pp.Google Scholar
  8. Bohren, C., & Huffman, D. (1983). Absorption and scattering of light by small particles. New York: Wiley. 530 pp.Google Scholar
  9. Borowska, L., Ryzhkov, A., Zrnic, D., Simmer, C., & Palmer, R. (2011). Attenuation and differential attenuation of the 5 cm wavelength radiation in melting hail. Journal of Applied Meteorology and Climatology, 50, 59–76.CrossRefGoogle Scholar
  10. Brandes, E. A., & Ikeda, K. (2004). Freezing-level estimation with polarimetric radar. Journal of Applied Meteorology, 43, 1541–1543.CrossRefGoogle Scholar
  11. Bringi, V., & Seliga, T. (1977). Scattering from axisymmetric dielectrics or perfect conductors imbedded in an axisymmetric dielectric. IEEE Transactions on Antennas and Propagation, 25, 575–580.CrossRefGoogle Scholar
  12. Bringi, V., & Chandrasekar, V. (2001). Polarimetric Doppler weather radar: Principles and applications. Cambridge, UK: Cambridge University Press. 636 pp.CrossRefGoogle Scholar
  13. Bringi, V., Vivekanandan, J., & Tuttle, J. (1986). Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. Journal of the Atmospheric Sciences, 43, 2564–2577.CrossRefGoogle Scholar
  14. Bringi, V., Huang, G., May, P., Glasson, K., & Keenan, T. (2009). The estimation of X-band attenuation due to wet ice in the mixed-phase region of convective storms and correction of LDR at X band using the CP-2 radar. In Proceeding 34th Conference on Radar Meteorology. Williamsburg, VA: American Meteor Society. 11A.3.Google Scholar
  15. Depue, T., Kennedy, P., & Rutledge, S. (2007). Performance of the hail differential reflectivity (HDR) polarimetric hail indicator. Journal of Applied Meteorology and Climatology, 46, 1290–1301.CrossRefGoogle Scholar
  16. Doviak, R., & Zrnic, D. (2006). Doppler Radar and Weather Observations (2nd ed.). Reprint, Mineola, NY: Dover. 562pp.Google Scholar
  17. Doviak, R., Bringi, V., Ryzhkov, A., Zahrai, A., & Zrnic, D. (2000). Considerations for polarimetric upgrades to operational WSR-88D radars. Journal of Atmospheric and Oceanic Technology, 17, 257–278.CrossRefGoogle Scholar
  18. Eccles, P., & Atlas, D. (1973). A dual-wavelength radar hail indicator. Journal of Applied Meteorology, 12, 847–854.CrossRefGoogle Scholar
  19. Ekpenyong, B., & Srivastava, R. (1970). Radar characteristics of the melting layer – a theoretical study. In 14th International Conference on Radar Meteorology, Tucson, AZ (pp. 161–166).Google Scholar
  20. Fabry, F., & Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and their interpretation. Journal of the Atmospheric Sciences, 52, 838–851.CrossRefGoogle Scholar
  21. Fabry, F., & Szyrmer, W. (1999). Modeling of the melting layer. Part II: Electromagnetic. Journal of the Atmospheric Sciences, 56, 3593–3600.CrossRefGoogle Scholar
  22. Griffin, E., Schuur, T., & Ryzhkov, A. (2018). A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. Journal of Applied Meteorology and Climatology, 57, 31–50.CrossRefGoogle Scholar
  23. Hardaker, P., Holt, A., & Collier, C. (1995). A melting –layer model and its use in correcting for the bright band in single-polarization radar echoes. Quarterly Journal of the Royal Meteorological Society, 121, 495–525.CrossRefGoogle Scholar
  24. Herzegh, P., & Jameson, A. (1992). Observing precipitation through dual-polarization radar measurements. Bulletin of the American Meteorological Society, 73, 1365–1374.CrossRefGoogle Scholar
  25. Hogan, R., Field, P., Illingworth, A., Cotton, R., & Choularton, T. (2002). Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar. Quarterly Journal of the Royal Meteorological. Society, 128, 451–476.Google Scholar
  26. Holler, H., Bringi, V., Hubbert, J., Hagen, M., & Meischner, P. (1994). Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. Journal of the Atmospheric Sciences, 51, 2500–2522.CrossRefGoogle Scholar
  27. Huang, G., Bringi, V., & Thurai, M. (2008). Orientation angle distributions of drops after 80 m fall using a 2D-video disdrometer. Journal of Atmospheric and Oceanic Technology, 25, 1717–1723.CrossRefGoogle Scholar
  28. Hubbert, J., Bringi, V., Carey, L., & Bolen, S. (1998). CSU-CHILL polarimetric radar measurements in a severe hailstorm in eastern Colorado. Journal of Applied Meteorology, 37, 748–775.CrossRefGoogle Scholar
  29. Ishimaru, A. (1991). Electromagnetic wave propagation, radiation and scattering (p. 1991). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  30. Jameson, A. (1987). Relations among linear and circular polarization parameters measured in canted hydrometeors. Journal of Atmospheric and Oceanic Technology, 4, 634–645.CrossRefGoogle Scholar
  31. Keenan, T. D., Carey, L. D., Zrnic, D. S., & May, P. (2001). Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution. Journal of Applied Meteorology, 40, 526–545.CrossRefGoogle Scholar
  32. Kennedy, P., Rutledge, S., Petersen, W., & Bringi, V. (2001). Polarimetric radar observations of hail formation. Journal of Applied Meteorology, 40, 1347–1366.CrossRefGoogle Scholar
  33. Klaassen, W. (1988). Radar observations and simulations of the melting layer of precipitation. Journal of the Atmospheric Sciences, 45, 3741–3753.CrossRefGoogle Scholar
  34. Matrosov, S. Y. (2004). Depolarization estimates from linear H and V measurements with weather radars operating in simultaneous transmission – simultaneous receiving mode. Journal of Atmospheric and Oceanic Technology, 21, 574–583.CrossRefGoogle Scholar
  35. Matrosov, S. Y. (2015). Evaluations of the spheroidal particle model for describing cloud radar depolarization ratios of ice hydrometeors. Journal of Atmospheric and Oceanic Technology, 32, 865–879.CrossRefGoogle Scholar
  36. Matrosov, S. Y., Reinking, R. F., Kropfli, R. A., Martner, B. E., & Bartram, B. W. (2001). On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. Journal of Applied Meteorology, 40, 479–490.CrossRefGoogle Scholar
  37. Matrosov, S., Reinking, R., & Djalalova, I. (2005). Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. Journal of the Atmospheric Sciences, 62, 241–250.CrossRefGoogle Scholar
  38. Matrosov, S. Y., Mace, G. G., Marchand, R., Shupe, M. D., Hallar, A. G., & Mc Cubbin, I. B. (2012). Observations of ice crystal habits with a scanning polarimetric W-band radar at slant linear depolarization ratios mode. Journal of Atmospheric and Oceanic Technology, 29, 989–1008.CrossRefGoogle Scholar
  39. McCormick, G., & Hendry, A. (1975). Principles for the radar determination of the polarization properties of precipitation. Radio Science, 10, 421–434.CrossRefGoogle Scholar
  40. Minervin, V., & Shupiatsky, A. (1963). Radar method for determining the phase state of clouds and precipitation. Trudy Centralnoj Aerologicheskoj Observatory, 47, 63–84. in Russian.Google Scholar
  41. Mirkovic, D. (2016). Computational electromagnetics for polarimetric radar scatterers: An approach to polarimetric variable modeling of hydrometeors and biota. Saarbrücken, Germany: Lambert Academic Publishing. 272 pp.Google Scholar
  42. Mishchenko, M. (2000). Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Applied Optics, 39, 1026–1031.CrossRefGoogle Scholar
  43. Otto, T., & Russchenberg, H. (2011). Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain. IEEE Geoscience and Remote Sensing Letters, 8, 988–992.CrossRefGoogle Scholar
  44. Picca, J., & Ryzhkov, A. (2012). A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Monthly Weather Review, 140, 1385–1403.CrossRefGoogle Scholar
  45. Rasmussen, R., & Heymsfield, J. (1987). Melting and shedding of graupel and hail. Part I: Model physics. Journal of the Atmospheric Sciences, 44, 2754–2763.CrossRefGoogle Scholar
  46. Russchenberg, H., & Ligthart, L. (1996). Backscattering and propagation through the melting layer of precipitation: A new polarimetric model. IEEE Transactions on Geoscience and Remote Sensing, 34, 3–14.CrossRefGoogle Scholar
  47. Ryzhkov, A. (2001). Interpretation of polarimetric radar covariance matrix for meteorological scatterers. Theoretical analysis. Journal of Atmospheric and Oceanic Technology, 18, 315–328.CrossRefGoogle Scholar
  48. Ryzhkov, A., & Zrnic, D. (1998). Discrimination between rain and snow with a polarimetric radar. Journal of Applied Meteorology, 37, 1228–1240.Google Scholar
  49. Ryzhkov, A., Zrnic, D., & Gordon, B. (1998). Polarimetric method for ice water content determination. Journal of Applied Meteorology, 37, 125–134.Google Scholar
  50. Ryzhkov, A. V., Giangrande, S. E., Melnikov, V. M., & Schuur, T. J. (2005a). Calibration issues of dual-polarization radar measurements. Journal of Atmospheric and Oceanic Technology, 22, 1138–1155.CrossRefGoogle Scholar
  51. Ryzhkov, A. V., Giangrande, S. E., & Schuur, T. J. (2005b). Rainfall estimation with a polarimetric prototype of the WSR-88D radar. Journal of Applied Meteorology, 44, 502–515.CrossRefGoogle Scholar
  52. Ryzhkov, A., Giangrande, S., Khain, A., Pinsky, M., & Pokrovsky, A. (2008). Exploring model-based polarimetric retrieval of vertical profiles of precipitation. In Extended Abstracts. 5th European Conference on Radar in Meteorology and Hydrology, Helsinki, Finland, CD-ROM, P6.1.Google Scholar
  53. Ryzhkov, A., Pinsky, M., Pokrovsky, A., & Khain, A. (2011). Polarimetric radar observation operator for a cloud model with spectral microphysics. Journal of Applied Meteorology and Climatology, 50, 873–894.CrossRefGoogle Scholar
  54. Ryzhkov, A., Kumjian, M., Ganson, S., & Khain, A. (2013). Polarimetric radar characteristics of melting hail. Pt I: Theoretical simulations using spectral microphysical modeling. Journal of Applied Meteorology and Climatology, 52, 2849–2870.CrossRefGoogle Scholar
  55. Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T., Simmer, C., & Troemel, S. (2016). Quasi-vertical profiles – a new way to look at polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 33, 551–562.CrossRefGoogle Scholar
  56. Ryzhkov, A., Matrosov, S., Melnikov, V., Zrnic, D., Zhang, P., Cao, Q., Knight, M., Simmer, C., & Troemel, S. (2017). Estimation of depolarization ratio using radars with simultaneous transmission / reception. Journal of Applied Meteorology and Climatology, 56, 1797–1816.CrossRefGoogle Scholar
  57. Sachidananda, M., & Zrnic, D. S. (1985). ZDR measurement consideration for a fast scan capability radar. Radio Science, 20, 907–922.CrossRefGoogle Scholar
  58. Sachidananda, M., & Zrnic, D. S. (1986). Differential propagation phase shift and rainfall rate estimation. Radio Science, 21, 235–247.CrossRefGoogle Scholar
  59. Schuur, T., Ryzhkov, A., & Clabo, D. (2005). Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. In Preprints, 32nd Conference on Radar Meteorology, CD-ROM, 15R.4.Google Scholar
  60. Snyder, J., Bluestein, H., Zhang, G., & Frasier, S. (2010). Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. Journal of Atmospheric and Oceanic Technology, 27, 1979–2001.CrossRefGoogle Scholar
  61. Troemel, S., Kumjian, M., Ryzhkov, A., & Simmer, C. (2013). Backscatter differential phase – estimation and variability. Journal of Applied Meteorology and Climatology, 52, 2529–2548.CrossRefGoogle Scholar
  62. Troemel, S., Ryzhkov, A., Zhang, P., & Simmer, C. (2014). Investigations of backscatter differential phase in the melting layer. Journal of Applied Meteorology and Climatology, 53, 2344–2359.CrossRefGoogle Scholar
  63. Troemel, S., Ryzhkov, A., & Simmer, C. 2017. Climatology of vertical profiles of polarimetric radar variables at X band in stratiform clouds. In 38th Conference on Radar Meteorology (p. 5). Chicago, IL: American Meteor Society. Retrieved from https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/320485
  64. Tuttle, J., & Rinehart, R. (1983). Attenuation correction in dual-wavelength analyses. Journal of Climate and Applied Meteorology, 22, 1914–1921.CrossRefGoogle Scholar
  65. Waterman, P. (1965). Matrix formulation of electromagnetic scattering. Proceedings of the IEEE, 53, 805–812.CrossRefGoogle Scholar
  66. Van de Hulst, H. (1981). Light scattering by small particles. New York: Dover.Google Scholar
  67. Vivekanandan, J., Bringi, V., & Raghavan, R. (1990). Multiparameter radar modeling and observation of melting ice. Journal of the Atmospheric Sciences, 47, 549–563.CrossRefGoogle Scholar
  68. Vivekanandan, J., Raghavan, R., & Bringi, V. (1993). Polarimetric radar modeling of mixtures of precipitation particles. IEEE Transactions on Geoscience and Remote Sensing, 31, 1017–1030.CrossRefGoogle Scholar
  69. Vivekanandan, J., Bringi, V., Hagen, M., & Meischner, P. (1994). Polarimetric radar studies of atmospheric ice particles. IEEE Transactions on Geoscience and Remote Sensing, 32, 1–10.CrossRefGoogle Scholar
  70. Yokoyama, T., & Tanaka, H. (1984). Microphysical processes of melting snowflakes detected by two-wavelength radar. Part I. Principle of measurement based on model calculation. Journal of the Meteorological Society of Japan, 62, 650–667.CrossRefGoogle Scholar
  71. Yokoyama, T., Tanaka, H., Nakamura, K., & Awaka, J. (1984). Microphysical processes of melting snowflakes detected by two-wavelength radar. Part II. Application of two-wavelength radar technique. Journal of the Meteorological Society of Japan, 62, 668–677.CrossRefGoogle Scholar
  72. Zawadzki, I., Szyrmer, W., Bell, C., & Fabry, F. (2005). Modeling of the melting layer. Part III: The density effect. Journal of the Atmospheric Sciences, 62, 3705–3723.CrossRefGoogle Scholar
  73. Zrnic, D., Balakrishnan, N., Ziegler, C., Bringi, V., Aydin, K., & Matejka, T. (1993). Polarimetric signatures in the stratiform region of a mesoscale convective system. Journal of Applied Meteorology, 32, 678–693.CrossRefGoogle Scholar
  74. Zrnic, D. S., Ryzhkov, A., Straka, J., Liu, Y., & Vivekanandan, J. (2001). Testing a procedure for automatic classification of hydrometeor types. Journal of Atmospheric and Oceanic Technology, 18, 892–913.CrossRefGoogle Scholar
  75. Zrnic, D., Doviak, R., Zhang, G., & Ryzhkov, A. (2010). Bias in differential reflectivity due to cross-coupling through the radiation patterns in the simultaneous horizontal / vertical polarization mode. Journal of Atmospheric and Oceanic Technology, 27, 1624–1637.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander V. Ryzhkov
    • 1
  • Dusan S. Zrnic
    • 2
  1. 1.Cooperative Institute for Mesoscale Meteorological StudiesThe University of OklahomaNormanUSA
  2. 2.National Severe Storms Laboratory, National Oceanic and Atmospheric AdministrationNormanUSA

Personalised recommendations