Microphysical and Dielectric Properties of Hydrometeors

  • Alexander V. Ryzhkov
  • Dusan S. Zrnic
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Microphysical properties of hydrometeors such as size, shape, orientation, and phase composition, and distribution of these properties over an ensemble of particles determine polarimetric radar variables. In this chapter, an overview of microphysical properties of different hydrometeor types is provided. Different forms of size distributions (SD) of raindrops and ice particles are discussed, and the statistics of the key parameters of SD such as liquid or ice water content, mean volume diameter, and normalized concentration are presented. The chapter contains basic information about density of atmospheric particles and their axis ratios and orientations. Special attention is given to dielectric properties of hydrometeors including basic formulas for dielectric constant of fresh water, solid ice, dry/wet snow, graupel, and hail.


Hydrometeors Dielectric properties Microphysical properties Size distribution Water content Mean diameter Concentration 


  1. Andsager, K., Beard, K., & Laird, N. (1999). Laboratory measurements of axis ratios for large drops. Journal of the Atmospheric Sciences, 56, 2673–2683.CrossRefGoogle Scholar
  2. Atlas, D., & Ulbrich, C. (2000). An observationally based conceptual model of warm oceanic convective rain in the tropics. Journal of Applied Meteorology, 39, 2165–2181.CrossRefGoogle Scholar
  3. Bang, W., & Lee, G.-W. (2017). Characteristics of DSD at two different climates and their implications into radar precipitation estimation. In Proceedings of 32nd International Union of Radio Science General Assembly and Scientific Symposium (p. 91).Google Scholar
  4. Beard, K., & Kubesh, R. (1991). Laboratory measurements of small raindrop distortion. Pt 2: Oscillation frequencies and modes. Journal of the Atmospheric Sciences, 48, 2245–2264.CrossRefGoogle Scholar
  5. Brandes, E., Zhang, G., & Vivekanandan, J. (2002). Experiments in rainfall estimation with polarimetric radar in a subtropical environment. Journal of Applied Meteorology, 41, 674–685.CrossRefGoogle Scholar
  6. Brandes, E., Ikeda, K., Zhang, G., Schoenhuber, M., & Rasmussen, R. (2007). A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video-disdrometer. Journal of Applied Meteorology, 46, 634–650.CrossRefGoogle Scholar
  7. Bringi, V. N., & Chandrasekar, V. (2001). Polarimetric Doppler weather radar: Principles and applications. Cambridge, UK: Cambridge University Press 636pp.CrossRefGoogle Scholar
  8. Bringi, V., Huang, G.-J., Chandrasekar, V., & Gorgucci, E. (2002). A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. Journal of Atmospheric and Oceanic Technology, 19, 633–645.CrossRefGoogle Scholar
  9. Bringi, V., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W., & Schoenhuber, M. (2003). Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Journal of the Atmospheric Sciences, 60, 354–365.CrossRefGoogle Scholar
  10. Bringi, V., Williams, C., Thurai, M., & May, P. (2009). Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. Journal of Atmospheric and Oceanic Technology, 26, 2107–2122.CrossRefGoogle Scholar
  11. Brown, P. R. A., & Francis, P. N. (1995). Improved measurements of ice water content in cirrus using a total-water probe. Journal of Atmospheric and Oceanic Technology, 12, 410–414.CrossRefGoogle Scholar
  12. Cao, Q., Zhang, G., Brandes, E., Schuur, T., Ryzhkov, A., & Ikeda, K. (2008). Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. Journal of Applied Meteorology and Climatology, 47, 2238–2255.CrossRefGoogle Scholar
  13. Caylor, I. J., & Chandrasekar, V. (1996). Time-varying crystal orientation in thunderstorms observed with multiparameter radar. IEEE Transactions on Geoscience and Remote Sensing, 34, 847–858.CrossRefGoogle Scholar
  14. Chandrasekar, V., Cooper, W., & Bringi, V. (1988). Axis ratios and oscillations of raindrops. Journal of the Atmospheric Sciences, 45, 1323–1333.CrossRefGoogle Scholar
  15. Cheng, L., & English, M. (1983). A relationship between hailstone concentration and size. Journal of the Atmospheric Sciences, 40, 204–213.CrossRefGoogle Scholar
  16. Cheng, L., English, M., & Wong, R. (1985). Hailstone size distributions and their relationship to storm thermodynamics. Journal of Climate and Applied Meteorology, 24, 1059–1067.CrossRefGoogle Scholar
  17. Delanoe, J., Protat, A., Testud, J., Bouniol, D., Heymsfiled, A., Bansemer, A., et al. (2005). Statistical properties of the normalized ice particles size distribution. Journal of Geophysical Research, 110, D10201.CrossRefGoogle Scholar
  18. Delanoe, J., Heymsfield, A., Protat, A., Bansemer, A., & Hogan, R. (2014). Normalized particle size distribution for remote sensing applications. Journal of Geophysical Research – Atmospheres, 119, 4202–4227.CrossRefGoogle Scholar
  19. Fabry, F., & Szyrmer, W. (1999). Modeling the melting layer. Part II: Electromagnetic. Journal of the Atmospheric Sciences, 56, 3593–3600.CrossRefGoogle Scholar
  20. Farley, R. (1987). Numerical modeling of hailstorms and hailstone growth. Pt II. The role of low-density riming growth in hail production. Journal of Climate and Applied Meteorology, 26, 234–254.CrossRefGoogle Scholar
  21. Garrett, T., Yuter, S., Fallgatter, C., Shkurko, K., Rhodes, S., & Endries, J. (2015). Orientations and aspect ratios of falling snow. Geophysical Research Letters, 42.
  22. Hendry, A., & McCormick, G. C. (1976). Radar observations of alignment of precipitation particles by electrostatic fields in thunderstorms. Journal of Geophysical Research, 81, 5353–5357.CrossRefGoogle Scholar
  23. Hendry, A., McCormick, G., & Barge, B. (1976). The degree of common orientations of hydrometeors observed by polarization diversity radars. Journal of Applied Meteorology, 15, 633–640.CrossRefGoogle Scholar
  24. Hendry, A., Antar, Y., & McCormick, G. (1987). On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics. Radio Science, 22, 37–50.CrossRefGoogle Scholar
  25. Heymsfield, A., & Wright, R. (2014). Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? Journal of the Atmospheric Sciences, 71, 3392–3403.CrossRefGoogle Scholar
  26. Heymsfield, A., Kramer, M., Wood, N., Gettleman, A., Field, P., & Liu, G. (2017). Dependence of ice water content and snowfall rate on temperature, globally: Comparison of in situ observations, satellite active remote sensing retrievals, and global climate model simulations. Journal of Applied Meteorology and Climatology, 56, 189–215.CrossRefGoogle Scholar
  27. Hu, Z., & Srivastava, R. (1995). Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. Journal of the Atmospheric Sciences, 52, 1761–1783.CrossRefGoogle Scholar
  28. Huang, G., Bringi, V., & Thurai, M. (2008). Orientation angle distributions of drops after 80 m fall using a 2D-video disdrometer. Journal of Atmospheric and Oceanic Technology, 25, 1717–1723.CrossRefGoogle Scholar
  29. Illingworth, A., & Blackman, T. (2002). The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. Journal of Applied Meteorology, 41, 286–297.CrossRefGoogle Scholar
  30. Jung, Y., Zhang, G., & Xue, M. (2008). Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Monthly Weather Review, 136, 2228–2245.CrossRefGoogle Scholar
  31. Jung, Y., Xue, M., & Zhang, G. (2010). Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysical scheme. Journal of Applied Meteorology and Climatology, 49, 146–163.CrossRefGoogle Scholar
  32. Khain, A., & Pinsky, M. (2018). Physical processes in clouds and cloud modeling. Cambridge, UK: Cambridge University Press. 626 pp.CrossRefGoogle Scholar
  33. Knight, C., & Knight, N. (1970). The falling behavior of hailstones. Journal of the Atmospheric Sciences, 27, 672–680.CrossRefGoogle Scholar
  34. Knight, C., Schlatter, P., & Schlatter, T. (2008). An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part II: Low-density growth of hail. Monthly Weather Review, 136, 2833–2848.CrossRefGoogle Scholar
  35. Korolev, A., & Isaac, G. (2003). Roundness and aspect ratio of particles in ice clouds. Journal of the Atmospheric Sciences, 60, 1795–1808.CrossRefGoogle Scholar
  36. Krehbiel, P. R., Chen, T., McCrary, S., Rison, W., Gray, G., & Brook, M. (1996). The use of dual-channel circular-polarization radar observations for remotely sensing storm electrification. Meteorology and Atmospheric Physics, 59, 65–82.CrossRefGoogle Scholar
  37. Kry, P., & List, R. (1974). Angular motions of freely falling spheroidal hailstone models. Physics of Fluids, 17, 1093–1102.CrossRefGoogle Scholar
  38. Lee, G., Zawadzki, I., Szyrmer, W., Sempere-Torres, D., & Uijlenhoet, R. (2004). A general approach to double-moment normalization of drop-size distributions. Journal of Applied Meteorology, 43, 264–281.CrossRefGoogle Scholar
  39. Leinonen, J., & Szyrmer, W. (2015). Radar signatures of snowflake riming: A modeling study. Earth and Space Science, 2, 346–358.CrossRefGoogle Scholar
  40. Liao, L., & Meneghini, R. (2005). On modeling air/spaceborne radar returns in the melting layer. IEEE Transactions on Geoscience and Remote Sensing, 43, 2799–2809.CrossRefGoogle Scholar
  41. Macklin, W. (1962). The density and structure of ice formed by accretion. Quarterly Journal of the Royal Meteorological Society, 88, 30–50.CrossRefGoogle Scholar
  42. Marshall, J. S., & Palmer, W. (1948). The distribution of raindrops with size. Journal of Meteorology, 5, 165–166.CrossRefGoogle Scholar
  43. Matson, R. J., & Huggins, A. W. (1980). The direct measurement of the sizes, shapes, and kinematics of falling hailstones. Journal of the Atmospheric Sciences, 37, 1107–1125.CrossRefGoogle Scholar
  44. Matrosov, S., Reinking, R., Kropfli, R., & Bartram, B. (1996). Estimation of ice hydrometeor types and shapes from radar polarization measurements. Journal of Atmospheric and Oceanic Technology, 13, 85–96.CrossRefGoogle Scholar
  45. Matrosov, S. (1997). Variability of microphysical parameters in high-altitude ice clouds: Results of the remote sensing method. Journal of Applied Meteorology, 36, 633–648.CrossRefGoogle Scholar
  46. Matrosov, S., Reinking, R., & Djalalova, I. (2005). Inferring fall attitudes of pristine dendritic crystals from polarimetic radar data. Journal of the Atmospheric Sciences, 62, 241–250.CrossRefGoogle Scholar
  47. Matrosov, S. (2008). Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Transactions on Geoscience and Remote Sensing, 46, 1039–1047.CrossRefGoogle Scholar
  48. Maxwell Garnett, J. C. (1904). Color in metal glasses and in metallic films. Philosophical Transactions of the Royal Society London A, 203, 385–420.CrossRefGoogle Scholar
  49. Melnikov, V., & Straka, J. (2013). Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. Journal of Atmospheric and Oceanic Technology, 30, 1691–1703.CrossRefGoogle Scholar
  50. Meneghini, R., & Liao, L. (1996). Comparisons of cross sections of melting hydrometeors as derived from dielectric mixing formulas and a numerical method. Journal of Applied Meteorology, 35, 1658–1670.CrossRefGoogle Scholar
  51. Metcalf, J. I. (1997). Temporal and spatial variations of hydrometeor orientation of hydrometeors in thunderstorms. Journal of Applied Meteorology, 36, 315–321.CrossRefGoogle Scholar
  52. Moisseev, D., Lautaportti, S., Tyynela, J., & Lim, S. (2015). Dual-polarization radar signatures in snowstorms: Role of snowflake aggregation. Journal of Geophysical Research – Atmospheres, 120, 12644–12655.CrossRefGoogle Scholar
  53. Moisseev, D., von Lerber, A., & Tiira, J. (2017). Quantifying the effect of riming on snowfall using ground-based observations. Journal of Geophysical Research – Atmospheres, 122, 4019–4037.CrossRefGoogle Scholar
  54. Ortega, K., Krause, J., & Ryzhkov, A. (2016). Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. Journal of Applied Meteorology and Climatology, 55, 829–848.CrossRefGoogle Scholar
  55. Phillips, V., Pokrovsky, A., & Khain, A. (2007). The influence of time-depending melting on the dynamics and precipitation production in maritime and continental storm clouds. Journal of the Atmospheric Sciences, 64, 338–359.CrossRefGoogle Scholar
  56. Pruppacher, H., & Pitter, R. (1971). A semi-empirical determination of the shape of cloud and rain drops. Journal of the Atmospheric Sciences, 28, 86–94.CrossRefGoogle Scholar
  57. Pruppacher, H., & Klett, J. (1997). Microphysics of clouds and precipitation (Vol. 954). Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
  58. Rasmussen, R. M., Levizzani, V., & Pruppacher, H. R. (1984). A wind tunnel study on the melting behavior of atmospheric ice particles. III: Experiment and theory for spherical ice particles of radius >500 μm. Journal of the Atmospheric Sciences, 41, 381–388.CrossRefGoogle Scholar
  59. Ryan, B. (1996). On the global variation of precipitating layer clouds. Bulletin of the American Meteorological Society, 77, 53–70.CrossRefGoogle Scholar
  60. Ryzhkov, A. V., Zrnic, D. S., Hubbert, J. C., Bringi, V. N., Vivekanandan, J., & Brandes, E. A. (2002). Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. Journal of Atmospheric and Oceanic Technology, 19, 340–354.CrossRefGoogle Scholar
  61. Ryzhkov, A., & Zrnic, D. (2007). Depolarization in ice crystals and its effect on radar polarimetric measurements. Journal of Atmospheric and Oceanic Technology, 24, 1256–1267.CrossRefGoogle Scholar
  62. Ryzhkov, A., Pinsky, M., Pokrovsky, A., & Khain, A. (2011). Polarimetric radar observation operator for a cloud model with spectral microphysics. Journal of Applied Meteorology and Climatology, 50, 873–894.CrossRefGoogle Scholar
  63. Ryzhkov, A., Kumjian, M., Ganson, S., & Khain, A. (2013). Polarimetric radar characteristics of melting hail. Pt I: Theoretical simulations using spectral microphysical modeling. Journal of Applied Meteorology and Climatology, 52, 2849–2870.CrossRefGoogle Scholar
  64. Schuur, T. J., Ryzhkov, A. V., & Clabo, D. R. (2005). Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. In Preprints, 32nd Conference on Radar Meteorology. CD-ROM, 15R.4.Google Scholar
  65. Smith, P., Musil, D., Weber, S., Spahn, J., Johnson, G., & Sand, W. (1976). Raindrop and hailstone distributions inside storms. In Preprints, International Conference on Cloud Physics (pp. 252–257). Boulder, CO: American Meteor Society.Google Scholar
  66. Spahn, J., & Smith, P. (1976). Some characteristics of hailstone size distributions inside hailstorms. In Preprints, 17th Conference on Radar Meteorology (pp. 187–191). Seattle, WA: American Meteorological Society.Google Scholar
  67. Straka, J. M., Zrnic, D. S., & Ryzhkov, A. V. (2000). Bulk hydrometeor classification and quantification using multiparameter radar data. Synthesis of relations. Journal of Applied Meteorology, 39, 1341–1372.CrossRefGoogle Scholar
  68. Szyrmer, W., & Zawadzki, I. (2010). Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. Journal of the Atmospheric Sciences, 67, 3319–3335.CrossRefGoogle Scholar
  69. Testud, J., Oury, S., Black, R., Amayenc, P., & Dou, X. (2001). The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. Journal of Applied Meteorology, 40, 1118–1140.CrossRefGoogle Scholar
  70. Thompson, E., Rutledge, S., Dolan, B., & Thurai, M. (2015). Drop size distributions and radar observations of convective and stratiform rain over the equatorial Indian and west Pacific Oceans. Journal of the Atmospheric Sciences, 72, 4091–4125.CrossRefGoogle Scholar
  71. Thurai, M., Gatlin, P., Bringi, V., Petersen, W., Kennedy, P., Notaros, B., et al. (2017). Toward completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. Journal of Applied Meteorology and Climatology, 56, 877–896.CrossRefGoogle Scholar
  72. Tiira, J., Moisseev, D., Lerber, A., Ori, D., Tokay, A., Bliven, L., et al. (2016). Ensemble mean density and its connection to other microphysical properties of falling snow as observed in southern Finland. Atmospheric Measurement Techniques, 9, 4825–4841.CrossRefGoogle Scholar
  73. Ulbrich, C. (1983). Natural variations in the analytical form of the raindrop size distribution. Journal of Climate and Applied Meteorology, 22, 1764–1775.CrossRefGoogle Scholar
  74. Ulbrich, C., & Atlas, D. (1982). Hail parameter relations: A comprehensive digest. Journal of Applied Meteorology, 21, 22–43.CrossRefGoogle Scholar
  75. Wen, L., Zhao, K., Zhang, G., Xue, M., Zhou, B., Liu, S., et al. (2016). Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. Journal of Geophysical Research – Atmospheres, 121, 2265–2282.CrossRefGoogle Scholar
  76. Woods, C., Stoelinga, T., & Locatelli, D. (2008). Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest. Journal of the Atmospheric Sciences, 65, 189–205.CrossRefGoogle Scholar
  77. Zawadzki, I., & De Agostinho Antonio, M. (1988). Equilibrium raindrop size distributions in tropical rain. Journal of the Atmospheric Sciences, 45, 3452–3459.CrossRefGoogle Scholar
  78. Zawadzki, I., Szyrmer, W., Bell, C., & Fabry, F. (2005). Modeling of the melting layer. Part III: The density effect. Journal of the Atmospheric Sciences, 62, 3705–3723.CrossRefGoogle Scholar
  79. Zhang, G., Vivekanandan, J., & Brandes, E. (2001). A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39(4), 830–840.CrossRefGoogle Scholar
  80. Zrnic, D., & Ryzhkov, A. (2004). Polarimetric properties of chaff. Journal of Atmospheric and Oceanic Technology, 21, 1017–1024.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander V. Ryzhkov
    • 1
  • Dusan S. Zrnic
    • 2
  1. 1.Cooperative Institute for Mesoscale Meteorological StudiesThe University of OklahomaNormanUSA
  2. 2.National Severe Storms Laboratory, National Oceanic and Atmospheric AdministrationNormanUSA

Personalised recommendations