Advertisement

Polarimetric Microphysical Retrievals

  • Alexander V. Ryzhkov
  • Dusan S. Zrnic
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

The retrieval of the mixing ratios for different hydrometeor types (or water and ice contents), median or mean volume diameter, and particle number concentration is the thrust of this chapter. These retrieved parameters of the bulk hydrometeor properties are suitable for assimilation into storm-scale numerical weather prediction models. The chapter starts with estimation of the liquid water content and the parameters of the drop size distribution in pure rain. Then polarimetric retrievals in ice and snow follow. Specifically, the methods for estimating the ice water content and the snow size distribution parameters are introduced. This is followed by discussion of measurement errors and validation of the retrievals in the case of mesoscale convective system. The chapter concludes with an example of the ice retrieval in a typical tropical cyclone.

Keywords

Microphysical retrieval Mixing ratio Median volume diameter Mean volume diameter Concentration Liquid water content Ice water content Measurement errors Validation 

References

  1. Anagnostou, M., Anagnostou, E., Vivekanandan, J., & Ogden, F. (2008). Comparison of two raindrop size distribution retrieval algorithms for X-band dual polarization observations. Journal of Hydrometeorology, 9, 589–600.CrossRefGoogle Scholar
  2. Atlas, D., Matrosov, S., Heymsfield, A., Chou, M., & Wolf, D. (1995). Radar and radiation properties of ice clouds. Journal of Applied Meteorology, 34, 2329–2345.CrossRefGoogle Scholar
  3. Brandes, E., Zhang, G., & Vivekanandan, J. (2002). Experiments in rainfall estimation with polarimetric radar in a subtropical environment. Journal of Applied Meteorology, 41, 674–685.CrossRefGoogle Scholar
  4. Brandes, E., Zhang, G., & Vivekanandan, J. (2004). Drop size distribution retrieval with polarimetric radar: Model and application. Journal of Applied Meteorology, 43, 461–475.CrossRefGoogle Scholar
  5. Brandes, E., Ikeda, K., Zhang, G., Schoenhuber, M., & Rasmussen, R. (2007). A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video-disdrometer. Journal of Applied Meteorology, 46, 634–650.CrossRefGoogle Scholar
  6. Bringi, V. N., & Chandrasekar, V. (2001). Polarimetric Doppler weather radar. Principles and applications. Cambridge, UK: Cambridge University Press. 636pp.CrossRefGoogle Scholar
  7. Bringi, V., Huang, G., Chandrasekar, V., & Gorgucci, E. (2002). A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-event from the TRMM/Brazil campaign. Journal of Atmospheric and Oceanic Technology, 19, 633–645.CrossRefGoogle Scholar
  8. Bringi, V., Carey, L., Gatlin, P., Schultz, E., Petersen, W. (2012). Estimating the accuracy of polarimetric radar-based retrievals of drop-size distribution parameters and rain rate: an application of error variance separation using radar-derived spatial correlations. J. Hydrometerology, 13, 1066–1079.Google Scholar
  9. Bringi, V., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W., & Schoenhuber, M. (2003). Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Journal of the Atmospheric Sciences, 60, 354–365.CrossRefGoogle Scholar
  10. Bringi, V., Williams, C., Thurai, M., & May, P. (2009). Using dual-polarized radar and dual-frequency profiler for DSD characterization: A case study from Darwin, Australia. Journal of Atmospheric and Oceanic Technology, 26, 2107–2122.CrossRefGoogle Scholar
  11. Brown, P. R. A., & Francis, P. N. (1995). Improved measurements of ice water content in cirrus using a total-water probe. Journal of Atmospheric and Oceanic Technology, 12, 410–414.CrossRefGoogle Scholar
  12. Bukovcic, P., Ryzhkov, A., Zrnic, D., & Zhang, G. (2018). Polarimetric radar relations for quantification of snow based on the disdrometer data. Journal of Applied Meteorology and Climatology, 57, 103–120.CrossRefGoogle Scholar
  13. Cao, Q., Zhang, G., Brandes, E., Schuur, T., Ryzhkov, A., & Ikeda, K. (2008). Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. Journal of Applied Meteorology and Climatology, 47, 2238–2255.CrossRefGoogle Scholar
  14. Cao, Q., Zhang, G., Brandes, E., & Schuur, T. (2010). Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. Journal of Applied Meteorology and Climatology, 49, 973–990.CrossRefGoogle Scholar
  15. Cao, Q., Zhang, G., & Xue, M. (2013). A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation. Journal of Applied Meteorology and Climatology, 52, 169–185.CrossRefGoogle Scholar
  16. Carlin, J., Ryzhkov, A., Snyder, J., & Khain, A. (2016). Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current equations and potential benefits of polarimetry. Monthly Weather Review, 144, 2981–3001.CrossRefGoogle Scholar
  17. Carlin, J., Gao, J., Snyder, J., & Ryzhkov, A. (2017). Assimilation of ZDR columns for improving the spin-up and forecast of convective storms in storm-scale models: Proof-of-concept experiments. Monthly Weather Review, 145, 5033–5057.CrossRefGoogle Scholar
  18. Delanoe, J., Heymsfield, A., Protat, A., Bansemer, A., & Hogan, R. (2014). Normalized particle distribution for remote sensing application. Journal of Geophysical Research – Atmospheres, 119, 4204–4227.CrossRefGoogle Scholar
  19. Doviak, R., & Zrnic, D. (2006). Doppler radar and weather observations (2nd ed.). Reprint, Mineola, NY: Dover, 562 pp.Google Scholar
  20. Erfani, E., & Mitchell, D. (2017). Growth of ice particle mass and projected area during riming. Atmospheric Chemistry and Physics, 17, 1241–1257.CrossRefGoogle Scholar
  21. Fridlind, A., Ackerman, A., Grandin, A., Dezitter, F., Weber, M., Strapp, J., Korolev, A., & Williams, C. (2015). High ice water content at low radar reflectivity near deep convection – Part 1: Consistency of in situ and remote-sensing observations with stratiform rain column simulations. Atmospheric Chemistry and Physics, 15, 11713–11728.CrossRefGoogle Scholar
  22. Gorgucci, E., Chandrasekar, V., Bringi, V., & Scarchilli, G. (2002). Estimation of raindrop size distribution parameters from polarimetric radar measurements. Journal of the Atmospheric Sciences, 59, 2373–2384.CrossRefGoogle Scholar
  23. Greene, D., & Clark, R. (1972). Vertically integrated liquid water – A new analysis tool. Monthly Weather Review, 100, 548–552.CrossRefGoogle Scholar
  24. Griffin, E., Schuur, T., & Ryzhkov, A. (2018). A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. Journal of Applied Meteorology and Climatology, 57, 31–50.CrossRefGoogle Scholar
  25. Hendry, A., Antar, Y., & McCormick, G. (1987). On the relationship between the degree of preferred orientation in precipitation and dual-polarization radar echo characteristics. Radio Science, 22, 37–50.CrossRefGoogle Scholar
  26. Heymsfield, A., Bansemer, A., Schmitt, C., Twohy, C., & Poellot, M. (2004). Effective ice particle densities derived from aircraft data. Journal of the Atmospheric Sciences, 61, 982–1003.CrossRefGoogle Scholar
  27. Heymsfield, A., Wang, Z., & Matrosov, S. (2005). Improved radar ice water content retrieval algorithms using coincident microphysical and radar measurements. Journal of Applied Meteorology, 44, 1391–1412.CrossRefGoogle Scholar
  28. Heymsfield, A., Matrosov, S., & Wood, N. (2016). Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat. Journal of Applied Meteorology and Climatology, 55, 2063–2090.CrossRefGoogle Scholar
  29. Hogan, R., Mittermaier, M., & Illingworth, A. (2006). The retrievals of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. Journal of Applied Meteorology and Climatology, 45, 301–317.CrossRefGoogle Scholar
  30. Homeyer, C. (2014). Formation of the enhanced-V infrared cloud top feature from high-resolution three-dimensional radar observations. Journal of the Atmospheric Sciences, 71, 332–348.CrossRefGoogle Scholar
  31. Homeyer, C., & Kumjian, M. (2015). Microphysical characteristics of overshooting convection from polarimetric radar observations. Journal of the Atmospheric Sciences, 72, 870–891.CrossRefGoogle Scholar
  32. Illingworth, A., & Thompson, A. (2005). The estimation of moderate rain rates with operational polarization radar. In 32nd Conference on Radar Meteorology, Albuquerque, NM, P9R.1.Google Scholar
  33. Jung, Y., Zhang, G., & Xue, M. (2008a). Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Monthly Weather Review, 136, 2228–2245.CrossRefGoogle Scholar
  34. Jung, Y., Zhang, G., Xue, M., & Straka, J. (2008b). Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric radar data on storm analysis. Monthly Weather Review, 136, 2246–2260.CrossRefGoogle Scholar
  35. Kim, D.-S., Maki, M., & Lee, D.-I. (2010). Retrieval of three-dimensional raindrop size distribution using X-band polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 27, 1265–1285.CrossRefGoogle Scholar
  36. Korolev, A., & Isaac, G. (2003). Roundness and aspect ratios of particles in ice clouds. Journal of the Atmospheric Sciences, 60, 1795–1808.CrossRefGoogle Scholar
  37. Korolev, A., Isaac, G., & Hallett, J. (2000). Ice particle habits in stratiform clouds. Quarterly Journal of the Royal Meteorological Society, 126, 2873–2902.CrossRefGoogle Scholar
  38. Leroy, D., Fontane, E., Schwarzenboeck, A., Strapp, J., Korolev, A., McFarquhar, G., Dupuy, R., Courbeyre, C., Lilie, L., Protat, A., Delanoe, J., Dezitter, F., & Grandin, A. (2017). Ice crystal sizes in high ice water content clouds. Part II: Statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project. Journal of Atmospheric and Oceanic Technology, 34, 117–136.CrossRefGoogle Scholar
  39. Li, X., & Mecikalski, J. (2010). Assimilation of the dual-polarization Doppler radar data for a convective storm with a warm-rain radar forward operator. Journal of Geophysical Research, 115, 1–16.Google Scholar
  40. Liu, C., & Illingworth, A. (2000). Toward more accurate retrievals of ice water content from radar measurements of clouds. Journal of Applied Meteorology, 39, 1130–1146.CrossRefGoogle Scholar
  41. Matrosov, S. (2007). Modeling backscatter properties of snowfall at millimeter wavelengths. Journal of the Atmospheric Sciences, 64, 1727–1736.CrossRefGoogle Scholar
  42. Matrosov, S., & Heymsfield, A. (2017). Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. Journal of Applied Meteorology and Climatology, 56, 2479–2488.CrossRefGoogle Scholar
  43. Matrosov, S., Reinking, R., & Djalalova, I. (2005a). Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. Journal of the Atmospheric Sciences, 62, 241–250.CrossRefGoogle Scholar
  44. Matrosov, S., Kingsmill, D., Martner, B., & Ralph, F. (2005b). The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. Journal of Hydrometeorology, 6, 248–262.CrossRefGoogle Scholar
  45. Matrosov, S., Schmitt, C., Maahn, M., & de Boer, G. (2017). Atmospheric ice particle shape estimates from polarimetric radar measurements and in situ observations. Journal of Atmospheric and Oceanic Technology, 34, 2569–2586.CrossRefGoogle Scholar
  46. McFarquhar, G., Timlin, M., Rauber, R., Jewitt, B., & Grim, J. (2007). Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Monthly Weather Review, 135, 3405–3428.CrossRefGoogle Scholar
  47. Melnikov, V., & Straka, J. (2013). Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. Journal of Atmospheric and Oceanic Technology, 30, 1691–1703.CrossRefGoogle Scholar
  48. Murphy, A., Ryzhkov, A., Zhang, P., McFarquhar, G., Wu, W., & Stechman, D. (2018). A polarimetric and microphysical analysis of the stratiform rain region of MCSs. In Annual American Meteorological Society Meeting, January 8–11, Austin, TX.Google Scholar
  49. Nguyen, C., Wolde, M., Baibakov, K., & Korolev, A. (2017). Detection and estimation of high ice water content using X-band and W-band dual-polarization airborne radar data. In 38th Conference on Radar Meteorology, Chicago, IL (p. 89). American Meteorological Society.Google Scholar
  50. Papoulis, A. (1991). Probability, random variables and stochastic processes. Boston, MA: McGraw-Hill.Google Scholar
  51. Pfeifer, M., Craig, C., Hagen, M., & Keil, C. (2008). A polarimetric radar forward operator for model evaluation. Journal of Applied Meteorology and Climatology, 47, 3202–3220.CrossRefGoogle Scholar
  52. Posselt, D., Li, X., Tushaus, A., & Mecikalski, J. (2015). Assimilation of dual-polarization radar observations in mixed- and ice-phase regions of convective storms: Information content and forward model errors. Monthly Weather Review, 143, 2611–2636.CrossRefGoogle Scholar
  53. Protat, A., Delanoe, J., Strapp, J., Fontaine, E., Leroy, D., Schwarzenboeck, A. et al. (2016). The measured relationship between ice water content and cloud radar reflectivity in tropical convective clouds. Journal of Applied Meteorology and Climatology, 55, 1707–1729.Google Scholar
  54. Putnam, B., Xue, M., Jung, Y., Snook, N., & Zhang, G. (2017). Ensemble probabilistic prediction of a mesoscale convective system and associated polarimetric radar variables using single-moment and double-moment microphysics schemes and EnKF radar data assimilation. Monthly Weather Review, 145, 2257–2279.CrossRefGoogle Scholar
  55. Ryzhkov, A., & Zrnic, D. (1998). Discrimination between rain and snow with a polarimetric radar. Journal of Applied Meteorology, 37, 1228–1240.CrossRefGoogle Scholar
  56. Ryzhkov, A., Zrnic, D., & Gordon, B. (1998). Polarimetric method for ice water content determination. Journal of Applied Meteorology, 37, 125–134.CrossRefGoogle Scholar
  57. Ryzhkov, A., Pinsky, M., Pokrovsky, A., & Khain, A. (2011). Polarimetric radar observation operator for a cloud model with spectral microphysics. Journal of Applied Meteorology and Climatology, 50, 873–894.CrossRefGoogle Scholar
  58. Ryzhkov, A., Diederich, M., Zhang, P., & Simmer, C. (2014). Utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. Journal of Atmospheric and Oceanic Technology, 31, 599–619.CrossRefGoogle Scholar
  59. Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T., Troemel, S., & Simmer, C. (2016). Quasi-vertical profiles – A new way to look at polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 33, 551–562.CrossRefGoogle Scholar
  60. Ryzhkov, A., Matrosov, S., Melnikov, V., Zrnic, D., Zhang, P., Cao, Q., Knight, M., Simmer, C., & Troemel, S. (2017). Estimation of depolarization ratio using radars with simultaneous transmission/reception. Journal of Applied Meteorology and Climatology, 56, 1797–1816.CrossRefGoogle Scholar
  61. Ryzhkov, A., Bukovcic, P., Murphy, A., Zhang, P., & McFarquhar, G. (2018). Ice microphysical retrievals using polarimetric radar data. In 10th European Conference on Radar in Meteorology and Hydrology, 1–6 July, The Netherlands, # 40. Retrieved from https://projects.knmi.nl/erad2018/ERAD2018_extended_abstract_040.pdf
  62. Sassen, K. (1987). Ice cloud content from radar reflectivity. Journal of Climate and Applied Meteorology, 26, 1050–1053.CrossRefGoogle Scholar
  63. Stanford, M., Warble, A., Zipser, E., Strapp, J., Leroy, D., Schwarzenboeck, A., Potts, R., & Protat, A. (2017). A ubiquitous ice size bias in simulations of tropical deep convection. Atmospheric Chemistry and Physics, 17, 9599–9621.CrossRefGoogle Scholar
  64. Straka, J. M., Zrnic, D. S., & Ryzhkov, A. V. (2000). Bulk hydrometeor classification and quantification using multiparameter radar data. Synthesis of relations. Journal of Applied Meteorology, 39, 1341–1372.CrossRefGoogle Scholar
  65. Strapp, J., Korolev, A., Ratvasky, T., Potts, R., Protat, A., May, P., et al. (2016). The High Ice Water Content (HIWC) study of deep convective clouds: Report on science and technical plan. (FAA Rep. No. DOT/FAA/TC-14/31), 105pp. Retrieved from https://www.tc.faa.gov/its/worldpac/techrpt/tc14-31.pdf
  66. Tabary, P., Boumahmoud, A., Andrieu, H., Thompson, R., Illingworth, A., LeBouar, E., & Testud, J. (2011). Evaluation of two “integrated” polarimetric quantitative precipitation estimation (QPE) algorithms at C band. Journal of Hydrology, 405(3), 248–260.CrossRefGoogle Scholar
  67. Thurai, M., Bringi, V. N., Carey, L. D., Gatlin, P., Schultz, E., & Petersen, W. A. (2012). Estimating the accuracy of polarimetric radar-based retrievals of drop-size distribution parameters and rain rate: An application of error variance separation using radar-derived spatial correlations. Journal of Hydrometeorology, 13, 1066–1079.CrossRefGoogle Scholar
  68. Tian, J., Dong, X., Xi, B., Wang, J., Homeyer, C., McFarquhar, G., & Fan, J. (2016). Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements. Journal of Geophysical Research – Atmospheres, 121, 10820–10839.CrossRefGoogle Scholar
  69. Tiira, J., Moisseev, D., Lerber, A., Ori, D., Tokay, A., Bliven, L., & Petersen, W. (2016). Ensemble mean density and its connection to other microphysical properties of falling snow as observed in Southern Finland. Atmospheric Measurement Techniques, 9, 4825–4841.CrossRefGoogle Scholar
  70. Vivekanandan, J., Bringi, V., Hagen, M., & Meischner, P. (1994). Polarimetric radar studies of atmospheric ice particles. IEEE Transactions on Geoscience and Remote Sensing, 32, 1–10.CrossRefGoogle Scholar
  71. Yoshikawa, E., Chandrasekar, V., & Ushio, T. (2014). Raindrop size distribution (DSD) retrieval for X-band dual-polarization radar. Journal of Atmospheric and Oceanic Technology, 31, 387–403.CrossRefGoogle Scholar
  72. Yoshikawa, E., Chandrasekar, V., Ushio, T., & Matsuda, T. (2016). A Bayesian approach for integrated raindrop size distribution (DSD) retrieval on an X-band dual-polarization radar network. Journal of Atmospheric and Oceanic Technology, 33, 377–389.CrossRefGoogle Scholar
  73. Zawadzki, I., Szyrmer, W., Bell, C., & Fabry, F. (2005). Modeling of the melting layer. Part III: The density effect. Journal of the Atmospheric Sciences, 62, 3705–3723.CrossRefGoogle Scholar
  74. Zhang, G. (2016). Weather radar polarimetry. Boca Raton, FL: CRC Press. 304pp.CrossRefGoogle Scholar
  75. Zhang, G., Vivekanandan, J., & Brandes, E. (2001). A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39, 830–841.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander V. Ryzhkov
    • 1
  • Dusan S. Zrnic
    • 2
  1. 1.Cooperative Institute for Mesoscale Meteorological StudiesThe University of OklahomaNormanUSA
  2. 2.National Severe Storms Laboratory, National Oceanic and Atmospheric AdministrationNormanUSA

Personalised recommendations