Advertisement

Polarimetric Measurements of Precipitation

  • Alexander V. Ryzhkov
  • Dusan S. Zrnic
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Quantitative precipitation estimation (QPE) is the subject of this chapter. A summary of various radar rainfall relations and their sensitivity to variability of drop-size distributions (DSD) at S, C, and X bands is presented. Emphasized is the algorithm based on the specific attenuation A. Various advantages of the R (A) methodology are discussed including its low sensitivity to the DSD variability and its immunity to radar miscalibration, partial beam blockage, and wet radome. The impact of contamination by hail and bright band on the performance of radar rainfall estimators is examined, and methods for mitigation of such contamination are suggested.

Large-scale validation of various QPE techniques is overviewed with the focus on the performance of the rainfall estimation algorithms which were tested on the US WSR-88D network of operational radars.

The problem of radar measurement of snow is addressed in the last section of the chapter. The challenges with reflectivity-based estimates of snow water equivalent rate are described, and possible polarimetric methodologies for snow measurements are outlined.

Keywords

Precipitation measurements Quantitative precipitation estimation (QPE) Radar rainfall relations Sensitivity to drop size distributions Contamination by hail Contamination by bright band Validations Measurements of snow water equivalent (SWE) rate 

References

  1. Anagnostou, M., Kalogiros, J., Anagnostou, E., Tarolli, M., Papadopoulos, A., & Borga, M. (2010). Performance evaluation of high-resolution estimation from X-band dual-polarization radar for flash flood applications in mountainous basins. Journal of Hydrology, 394, 4–16.Google Scholar
  2. Andrieu, H., & Creutin, J. D. (1995). Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. Journal of Applied Meteorology, 34, 225–239.Google Scholar
  3. Andrieu, H., Delrieu, G., & Creutin, J. D. (1995). Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part II: Sensitivity analysis and case study. Journal of Applied Meteorology, 34, 240–259.Google Scholar
  4. Atlas, D., Srivastava, R., & Sekhon, R. (1973). Doppler radar characteristics of precipitation at vertical incidence. Reviews of Geophysics and Space Physics, 2, 1–35.Google Scholar
  5. Atlas, D., & Ulbrich, C. (1977). Path- and area-integrated rainfall measurements by microwave attenuation in the 1 – 3 cm band. Journal of Applied Meteorology, 16, 1322–1331.Google Scholar
  6. Balakrishnan, N., & Zrnic, D. (1990). Estimation of rain and hail rates in mixed-phase precipitation. Journal of the Atmospheric Sciences, 47, 565–583.Google Scholar
  7. Battan, L. J. (1973). Radar observations of the atmosphere (324 pp.). Chicago, IL: The University of Chicago Press.Google Scholar
  8. Bechini, R., Baldini, L., & Chandrasekar, V. (2013). Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. Journal of Applied Meteorology and Climatology, 52, 1147–1169.Google Scholar
  9. Bellon, A., Lee, G., & Zawadzki, I. (2005). Error statistics of VPR corrections in stratiform precipitation. Journal of Applied Meteorology, 44, 998–1015.Google Scholar
  10. Borowska, L., Zrnic, D., Ryzhkov, A., Zhang, P., & Simmer, C. (2011). Polarimetric estimates of a 1-month accumulation of light rain with a 3-cm wavelength radar. Journal of Hydrometeorology, 12, 1024–1039.Google Scholar
  11. Boudala, F., Isaac, G., & Hudak, D. (2006). Ice water content and precipitation rate as a function of equivalent radar reflectivity and temperature based on in situ observations. Journal of Geophysical Research, 111, D11202. https://doi.org/10.1029/2005JD006499.CrossRefGoogle Scholar
  12. Braham, R. (1990). Snow particle size spectra in lake effect snows. Journal of Applied Meteorology, 29, 200–207.Google Scholar
  13. Brandes, E., Ikeda, K., Zhang, G., Schoenhuber, M., & Rasmussen, R. (2007). A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video-disdrometer. Journal of Applied Meteorology, 46, 634–650.Google Scholar
  14. Brandes, E., Zhang, G., & Vivekanandan, J. (2002). Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. Journal of Applied Meteorology, 41, 674–685.Google Scholar
  15. Bringi, V., Rico-Ramirez, M., & Thurai, M. (2011). Rainfall estimation with an operational polarimetric C-band radar in the United Kingdom: Comparison with a gage network and error analysis. Journal of Hydrometeorology, 12, 935–954.Google Scholar
  16. Bringi, V., Thurai, M., Nakagawa, K., Huang, G., Kobayashi, T., Adachi, A., Hanado, H., & Sekizawa, S. (2006). Rainfall estimation from C-band polarimetric radar in Okinawa, Japan: Comparisons with 2D-video disdrometer and 400 MHz wind profiler. Journal of the Meteorological Society of Japan, 84, 705–724.Google Scholar
  17. Bukovcic, P., Ryzhkov, A., Zrnic, D., & Zhang, G. (2018). Polarimetric radar relations for quantification of snow based on the disdrometer data. Journal of Applied Meteorology and Climatology, 57, 102–120.Google Scholar
  18. Chandrasekar, V., Gorgucci, E., & Scarchilli, G. (1993). Optimization of multiparameter radar estimates of rainfall. Journal of Applied Meteorology, 32, 1288–1293.Google Scholar
  19. Chen, H., & Chandrasekar, V. (2015). The quantitative precipitation estimation system for Dallas - Fort Worth (DFW) urban remote sensing network. Journal of Hydrology, 531, 259–271.Google Scholar
  20. Chen, H., Chandrasekar, V., & Bechini, R. (2017). An improved dual-polarization radar rainfall algorithm (DROPS2.0): Application in NASA IFloodS field campaign. Journal of Hydrometeorology, 18, 917–937.Google Scholar
  21. Cifelli, R., Chandrasekar, V., Lim, S., Kennedy, P., Wang, Y., & Rutledge, S. (2011). A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. Journal of Atmospheric and Oceanic Technology, 28, 352–364.Google Scholar
  22. Cocks, S., Y. Wang, L. Tang, P. Zhang, A. Ryzhkov, B. Kaney, et al. (2019). A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar using specific attenuation and specific differential phase. Part II: Case study analysis and performance verification. Journal of Hydrometeorology. Conditionally accepted.Google Scholar
  23. Diederich, M., Troemel, S., Ryzhkov, A., Zhang, P., & Simmer, C. (2015). Use of specific attenuation for rainfall measurements at X-band radar wavelengths. Part II: Rainfall estimates and comparison with rain gauges. Journal of Hydrometeorology, 16, 503–516.Google Scholar
  24. Doviak, R. J., & Zrnic, D. S. (2006). Doppler radar and weather observations., (p. 562). Reprint, Mineola, NY: Dover.Google Scholar
  25. Fabry, F., & Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and their interpretation. Journal of the Atmospheric Sciences, 52, 838–851.Google Scholar
  26. Figueras i Ventura, J., Baumahmoud, A.-A., Fradon, B., Dupuy, P., & Tabary, P. (2012). Long-term monitoring of French polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at C band. Quarterly Journal of the Royal Meteorological Society, 138, 2212–2228.Google Scholar
  27. Figueras i Ventura, J., & Tabary, P. (2013). The new French operational polarimetric radar rainfall rate product. Journal of Applied Meteorology and Climatology, 52, 1817–1835.Google Scholar
  28. Fujiyoshi, Y., Endoh, T., Yamada, T., Tsuboki, K., Tachibana, Y., & Wakahama, G. (1990). Determination of a Z–R relationship for snowfall using a radar and sensitive snow gauges. Journal of Applied Meteorology, 29, 147–152.Google Scholar
  29. Germann, U., & Joss, J. (2002). Mesobeta profiles to extrapolate radar precipitation measurements above the Alps to the ground level. Journal of Applied Meteorology, 41, 542–557.Google Scholar
  30. Giangrande, S., Collis, S., Theisen, A., & Tokay, A. (2014). Precipitation estimation from the ARM distributed radar network during the MC3E campaign. Journal of Applied Meteorology and Climatology, 53, 2130–2147.Google Scholar
  31. Giangrande, S., & Ryzhkov, A. (2008). Estimation of rainfall based on the results of polarimetric echo classification. Journal of Applied Meteorology, 47, 2445–2462.Google Scholar
  32. Griffin, E., Schuur, T., & Ryzhkov, A. (2018). A polarimetric analysis of ice microphysical processes in snow, using quasi-vertical profiles. Journal of Applied Meteorology and Climatology, 57, 31–50.Google Scholar
  33. Gunn, K., & Marshall, J. (1958). The distribution with size of aggregated snowflakes. Journal of Meteorology, 15, 452–461.Google Scholar
  34. Heymsfield, A., Bansemer, A., Field, P., Durden, S., Stith, J., Dye, J., Hall, W., & Grainger, C. (2002). Observations and parametrizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. Journal of the Atmospheric Sciences, 59, 3457–3490.Google Scholar
  35. Heymsfield, A., Matrosov, S., & Wood, N. (2016). Toward improving ice water content and snow-rate retrievals from radars. Part I: X and W bands, emphasizing CloudSat. Journal of Applied Meteorology and Climatology, 55, 2063–2090.Google Scholar
  36. Heymsfield, A., Schmitt, C., & Bansemer, A. (2013). Ice cloud particle size distributions and pressure – dependent terminal velocities from in situ observations at temperatures from 0°C to -86°C. Journal of the Atmospheric Sciences, 70, 4123–4154.Google Scholar
  37. Houze, R., Hobbs, P., Herzegh, P., & Parsons, D. (1979). Size distributions of precipitation particles in frontal clouds. Journal of the Atmospheric Sciences, 36, 156–162.Google Scholar
  38. Huang, G.-J., Bringi, V., Cifelli, R., Hudak, D., & Petersen, W. (2010). A methodology to derive radar reflectivity-liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. Journal of Atmospheric and Oceanic Technology, 27, 637–651.Google Scholar
  39. Huang, G.-J., Bringi, V., Moisseev, D., Petersen, W., Bliven, L., & Hudak, D. (2015). Use of 2D-video disdrometer to derive mean density-size and Ze – SR relations: Four snow cases from the light precipitation validation environment. Atmospheric Research, 153, 34–48.Google Scholar
  40. Hunter, S., Holroyd, E., & Hartzell, C. (2001). Improvements to the WSR-88D snow accumulation algorithm. Preprints, 30th International Conference on Radar Meteorology. Munich, Germany: American Metrological Society (pp. 716–718). Retrieved from http://ams.confex.com/ams/pdfpapers/20852.pdf
  41. Illingworth, A., & Blackman, T. (2002). The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. Journal of Applied Meteorology, 41, 286–297.Google Scholar
  42. Illingworth, A., & Thompson, A. (2005). The estimation of moderate rain rates with operational polarization radar. In 32nd International Conference on Radar Meteorology. Albuquerque, NM. P9R.1.Google Scholar
  43. Jameson, A. (1991). A comparison of microwave techniques for measuring rainfall. Journal of Applied Meteorology, 30, 32–54.Google Scholar
  44. Kennedy, P. C., & Rutledge, S. A. (2011). S-band dual-polarization radar observations of winter storms. Journal of Applied Meteorology and Climatology, 50, 844–858.Google Scholar
  45. Kitchen, M., Brown, R., & Davies, A. (1994). Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Quarterly Journal of the Royal Meteorological Society, 120, 1231–1254.Google Scholar
  46. Koistinen, J. (1991). Operational correction of radar rainfall errors due to vertical reflectivity profile. In Preprints, 25th International Conference on Radar Meteorology (pp. 297–302). Paris, France: American Meteorological Society.Google Scholar
  47. Koistinen, J., Michelson, D., Hohti, H., & Peura, M. (2003). Operational measurement of precipitation in cold climates. In P. Meischner (Ed.), Weather radar, principles and advanced applications (pp. 78–114). Berlin: Springer.Google Scholar
  48. Korolev, A., & Isaac, G. (2003). Roundness and aspect ratio of particles in ice clouds. Journal of the Atmospheric Sciences, 60, 1795–1808.Google Scholar
  49. Lim, S., Cifelli, R., Chandrasekar, V., & Matrosov, S. (2013). Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the Hydrometeorology Testbed. Journal of Atmospheric and Oceanic Technology, 30, 2108–2120.Google Scholar
  50. Maesaka, T., Iwanami, K., & Maki, M. (2012). Non-negative KDP estimation by monotone increasing ΦDP assumption below melting layer. In Extended abstracts. The 7th European conference on radar meteorology and hydrology.Google Scholar
  51. Maki, M., Park, S.-G., & Bringi, V. (2005). Effect of natural variations in rain drop size distributions on rain rate estimators of 3 cm wavelength polarimetric radar. Journal of the Meteorological Society of Japan, 83, 871–893.Google Scholar
  52. Marshall, J. S., & Palmer, W. (1948). The distribution of raindrops with size. Journal of Meteorology, 5, 165–166.Google Scholar
  53. Matrosov, S. (2010). Evaluating polarimetric X-band radar rainfall estimators during HMT. Journal of Atmospheric and Oceanic Technology, 27, 122–134.Google Scholar
  54. Matrosov, S., Campbell, C., Kingsmill, D., & Sukovich, E. (2009). Assessing snowfall rates from X-band radar reflectivity measurements. Journal of Atmospheric and Oceanic Technology, 26, 2324–2339.Google Scholar
  55. Matrosov, S., Cifelli, R., & Gochis, D. (2013). Measurements of heavy convective rainfall in presence of hail in flood-prone areas using an X-band polarimetric radar. Journal of Applied Meteorology and Climatology, 52, 395–407.Google Scholar
  56. Matrosov, S., Cifelli, R., Kennedy, P., Nesbitt, S., Rutledge, S., Bringi, V., & Martner, B. (2006). A comparative study of rainfall retrievals based on specific differential phase shifts at X- and S-band frequencies. Journal of Atmospheric and Oceanic Technology, 23, 952–963.Google Scholar
  57. Matrosov, S., Kingsmill, D., & Ralph, F. (2005). The utility of X-band polarimetric radar for quantitative estimates of rainfall parameters. Journal of Hydrometeorology, 6, 248–262.Google Scholar
  58. Matrosov, S. Y., Clark, K. A., & Kingsmill, D. E. (2007). A polarimetric radar approach to indentify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. Journal of Applied Meteorology and Climatology, 46, 154–166.Google Scholar
  59. May, P., Keenan, T., Zrnic, D., Carey, L., & Rutledge, S. (1999). Polarimetric radar measurements of tropical rain at 5-cm wavelength. Journal of Applied Meteorology, 38, 750–765.Google Scholar
  60. Mitchell, D., & Heymsfield, A. (2005). Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. Journal of the Atmospheric Sciences, 62, 1637–1644.Google Scholar
  61. Moisseev, D., von Lerber, A., & Tiira, J. (2017). Quantifying the effect of riming on snowfall using ground-based observations. Journal of Geophysical Research – Atmospheres, 122, 4019–4037.Google Scholar
  62. Molthan, A., Petersen, W., Nesbitt, S., & Hudak, D. (2010). Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. Monthly Weather Review, 138, 4254–4267.Google Scholar
  63. Ohtake, T., & Henmi, T. (1970). Radar reflectivity of aggregated snowflakes. In Preprints, 14th Conference on Radar Meteorology (pp. 332–335). Tucson, AZ: American Meteorological Society.Google Scholar
  64. Otto, T., & Russchenberg, H. W. J. (2011). Estimation of specific differential phase and differential backscatter phase from polarimetric weather radar measurements of rain. IEEE Geoscience and Remote Sensing Letters, 8(5), 988–992.Google Scholar
  65. Park, S.-G., Maki, M., Iwanami, K., Bringi, V., & Chandrasekar, V. (2005). Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part II: Evaluation and application. Journal of Atmospheric and Oceanic Technology, 22, 1633–1655.Google Scholar
  66. Pepler, A., May, P., & Thurai, M. (2011). A robust error-based rain estimation method for polarimetric radar. Part I: Development of a method. Journal of Applied Meteorology and Climatology, 50, 2092–2103.Google Scholar
  67. Petersen, W., et al. (1999). Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. The Bulletin of the American Meteorological Society, 80, 191–216.Google Scholar
  68. Puhakka, T. (1975). On the dependence of the Z – R relation on the temperature in snowfall. In Preprints, 18th conference on radar meteorology (pp. 504–507). Houston, TX: American Meteorological Society.Google Scholar
  69. Qi, Y., Zhang, J., Zhang, P., & Cao, Q. (2013). VPR correction of bright band effects in radar QPEs using polarimetric radar observations. Journal of Geophysical Research-Atmospheres, 118, 3627–3633.Google Scholar
  70. Rasmussen, R., Dixon, M., Vasiloff, S., Hage, F., Knight, S., Vivekanandan, J., & Xue, M. (2003). Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. Journal of Applied Meteorology, 42, 20–36.Google Scholar
  71. Ryan, B. (2000). A bulk parametrization of the ice particle size distribution and the optical properties in ice clouds. Journal of the Atmospheric Sciences, 57, 1436–1451.Google Scholar
  72. Ryzhkov, A., Bukovcic, P., Murphy, A., Zhang, P., & McFarquhar, G. (2018). Ice microphysical retrievals using polarimetric radar data. In 10th European conference on radar in meteorology and hydrology, 1–6 July, The Netherlands, # 40. Retrieved from https://projects.knmi.nl/erad2018/ERAD2018_extended_abstract_040.pdf
  73. Ryzhkov, A., Diederich, M., Zhang, P., & Simmer, C. (2014). Utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. Journal of Atmospheric and Oceanic Technology, 31, 599–619.Google Scholar
  74. Ryzhkov, A., Kumjian, M., Ganson, S., & Khain, A. (2013a). Polarimetric radar characteristics of melting hail. Pt I: Theoretical simulations using spectral microphysical modeling. Journal of Applied Meteorology and Climatology, 52, 2849–2870.Google Scholar
  75. Ryzhkov, A., Kumjian, M., Ganson, S., & Zhang, P. (2013b). Polarimetric radar characteristics of melting hail. Pt II: Practical implications. Journal of Applied Meteorology and Climatology, 52, 2871–2886.Google Scholar
  76. Ryzhkov, A., Zhang, P., Krause, J., Schuur, T., Palmer, R., & Zrnic, D. (2012). Simultaneous measurements of precipitation using S-band and C-band polarimetric radars. In Weather radar and hydrology (pp. 87–92) (Symposium held in Exeter, UK, April 2011) (IAHS Publ. 351, 2012).Google Scholar
  77. Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T., Troemel, S., & Simmer, C. (2016). Quasi-vertical profiles – a new way to look at polarimetric radar data. Journal of Atmospheric and Oceanic Technology, 33, 551–562.Google Scholar
  78. Ryzhkov, A., & Zrnic, D. (1995). Comparison of dual-polarization radar estimators of rain. Journal of Atmospheric and Oceanic Technology, 12, 249–256.Google Scholar
  79. Ryzhkov, A., & Zrnic, D. (1996). Assessment of rainfall measurement that uses specific differential phase. Journal of Applied Meteorology, 35, 2080–2090.Google Scholar
  80. Ryzhkov, A., & Zrnic, D. (1998a). Polarimetric rainfall estimation in the presence of anomalous propagation. Journal of Atmospheric and Oceanic Technology, 15, 1321–1331.Google Scholar
  81. Ryzhkov, A., & Zrnic, D. (1998b). Beamwidth effects on the differential phase measurements of rain. Journal of Atmospheric and Oceanic Technology, 15, 624–634.Google Scholar
  82. Ryzhkov, A., & Zrnic, D. (1998c). Discrimination between rain and snow with a polarimetric radar. Journal of Applied Meteorology, 37, 1228–1240.Google Scholar
  83. Ryzhkov, A. V., Giangrande, S. E., & Schuur, T. J. (2005). Rainfall estimation with a polarimetric prototype of the WSR-88D radar. Journal of Applied Meteorology, 44, 502–515.Google Scholar
  84. Ryzhkov, A. V., Zrnic, D. S., & Fulton, R. (2000). Areal rainfall estimates using differential phase. Journal of Applied Meteorology, 39, 263–268.Google Scholar
  85. Sachidananda, M., & Zrnic, D. S. (1986). Differential propagation phase shift and rainfall rate estimation. Radio Science, 21, 235–247.Google Scholar
  86. Sachidananda, M., & Zrnic, D. S. (1987). Rain rate estimates from differential polarization measurements. Journal of Atmospheric and Oceanic Technology, 4, 588–598.Google Scholar
  87. Saltikoff, E., Huuskonen, A., Hohti, H., Koistinen, J., & Jarvinen, H. (2010). Quality assurance in the FMI Doppler weather radar network. Boreal Environment Research, 15, 579–594.Google Scholar
  88. Schneebeli, M., & Berne, A. (2012). An extended Kalman filter framework for polarimetric X-band weather radar data processing. Journal of Atmospheric and Oceanic Technology, 29, 711–730.Google Scholar
  89. Schuur, T. J., Ryzhkov, A. V., & Clabo, D. R. (2005). Climatological analysis of DSDs in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. In Preprints, 32nd Conference on Radar Meteorology, CD-ROM, 15R.4.Google Scholar
  90. Sekhon, R., & Srivastava, R. (1970). Snow size spectra and radar reflectivity. Journal of the Atmospheric Sciences, 27, 299–307.Google Scholar
  91. Seliga, T., Bringi, V., & Al-Khatib, H. (1981). A preliminary study of comparative measurement of rainfall rate using the differential reflectivity radar technique and a raingauge network. Journal of Applied Meteorology, 20, 1362–1368.Google Scholar
  92. Seo, D.-J., Breidenbach, J., Fulton, R., Miller, D., & O’Bannon, T. (2000). Real-time adjustment of range-dependent biases in WSR-88D rainfall estimates due to nonuniform vertical profile of reflectivity. Journal of Hydrometeorology, 1, 222–240.Google Scholar
  93. Steiner, M., Houze, R., & Yuter, S. (1995). Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. Journal of Applied Meteorology, 34, 1978–2007.Google Scholar
  94. Szyrmer, W., & Zawadzki, I. (2010). Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. Journal of the Atmospheric Sciences, 67, 3319–3335.Google Scholar
  95. Tabary, P., Boumahmoud, A., Andrieu, H., Thompson, R., Illingworth, A., LeBouar, E., & Testud, J. (2011). Evaluation of two “integrated” polarimetric quantitative precipitation estimation (QPE) algorithms at C band. Journal of Hydrology, 405(3), 248–260.Google Scholar
  96. Tabary, P., Le Henaff, A., Vulpiani, G., Parent-du-Chatelet, J., & Gourley, J. (2006). Melting layer characterization and identification with a C-band dual-polarization radar: A long-term analysis. In Preprints, Fourth European conference on radar in meteorology and hydrology (ERAD 2006), Barcelona (pp. 17–20).Google Scholar
  97. Testud, J., Le Bouar, E., Obligis, E., & Ali-Mehenni, M. (2000). The rain profiling algorithm applied to polarimetric weather radar. Journal of Atmospheric and Oceanic Technology, 17, 332–356.Google Scholar
  98. Testud, J., Oury, S., Black, R., Amayenc, P., & Dou, X. (2001). The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. Journal of Applied Meteorology, 40, 1118–1140.Google Scholar
  99. Thompson, E., Rutledge, S., Dolan, B., Thurai, M., & Chandrasekar, V. (2018). Dual-polarization radar rainfall estimation over tropical oceans. Journal of Applied Meteorology and Climatology, 57, 755–775.Google Scholar
  100. Troemel, S., Kumjian, M., Ryzhkov, A., & Simmer, C. (2013). Backscatter differential phase – estimation and variability. Journal of Applied Meteorology and Climatology, 52, 2529–2548.Google Scholar
  101. Troemel, S., Ryzhkov, A., & Simmer, C. (2017). Climatology of vertical profiles of polarimetric radar variables at X band in stratiform clouds. In 38th Conference on Radar Meteorology (p. 5). Chicago, IL: American Meteorological Society. Retrieved from https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/320485
  102. Vasiloff, S. (1997) Interpretation of radar data during snow events in mountainous terrain. Western Region Tech. Attachment 97–35, 16 pp. Retrieved from https://www.weather.gov/media/wrh/online_publications/TAs/ta9735.pdf
  103. Vignal, B., Andrieu, H., & Creutin, J. D. (1999). Identification of vertical profiles of reflectivity from volume-scan radar data. Journal of Applied Meteorology, 38, 1214–1228.Google Scholar
  104. Vignal, B., Galli, G., Joss, J., & Germann, U. (2000). Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. Journal of Applied Meteorology, 39, 1715–1726.Google Scholar
  105. Vignal, B., & Krajewski, W. (2001). Large-sample evaluation of two methods to correct range-dependent error for WSR-88D rainfall estimates. Journal of Hydrometeorology, 2, 490–504.Google Scholar
  106. Von Lerber, A., Moisseev, D., Bliven, L., Petersen, W., Harri, A., & Chandrasekar, V. (2017). Microphysical properties of snow and their link to Ze–S relations during BAECC 2014. Journal of Applied Meteorology and Climatology, 56, 1561–1582.Google Scholar
  107. Vulpiani, G., Montopoli, M., Passeri, L., Giola, A., Giordano, P., & Marzano, F. (2012). On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas. Journal of Applied Meteorology and Climatology, 51, 405–425.Google Scholar
  108. Wang, Y., & Chandrasekar, V. (2009). Algorithm for estimation of the specific differential phase. Journal of Atmospheric and Oceanic Technology, 26, 2565–2578.Google Scholar
  109. Wang, Y., & Chandrasekar, V. (2010). Quantitative precipitation estimation in the CASA X-band dual-polarization radar network. Journal of Atmospheric and Oceanic Technology, 27, 1665–1676.Google Scholar
  110. Wang, Y., Cocks, S., Tang, L., Ryzhkov, A., Zhang, P., Zhang, J. (2019). A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar using specific attenuation and specific differential phase. Part I: Algorithm description and initial results. Journal of Hydrometeorology. Conditionally accepted.Google Scholar
  111. Wang, Y., Zhang, J., Ryzhkov, A., & Tang, L. (2013). C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. Journal of Atmospheric and Oceanic Technology, 30, 1354–1370.Google Scholar
  112. Wang, Y., Zhang, P., Ryzhkov, A., Zhang, J., & Chang, P.-L. (2014). The application of specific attenuation for tropical rainfall estimation in complex terrain. Journal of Hydrometeorology, 15, 2250–2266.Google Scholar
  113. Wilks, D. (2006). Statistical methods in the atmospheric sciences (704 pp.). Amsterdam, The Netherlands: Elsevier.Google Scholar
  114. Wolfe, J., & Snider, J. (2012). A relationship between reflectivity and snow rate for a high-altitude S-band radar. Journal of Applied Meteorology and Climatology, 51, 1111–1128.Google Scholar
  115. Wolfensberger, D., Scipion, D., & Berne, A. (2015). Detection and characterization of the melting layer based on polarimetric radar scans. Quarterly Journal of the Royal Meteorological Society, 142, 108–124.Google Scholar
  116. Woods, C., Stoelinga, T., & Locatelli, D. (2008). Size spectra of snow particles measured in wintertime precipitation in the Pacific Northwest. Journal of the Atmospheric Sciences, 65, 189–205.Google Scholar
  117. Zawadzki, I., Jung, E., & Lee, G. (2010). Snow studies. Part I: A study of natural variability of snow terminal velocity. Journal of the Atmospheric Sciences, 67, 1591–1604.Google Scholar
  118. Zawadzki, I., Szyrmer, W., Bell, C., & Fabry, F. (2005). Modeling of the melting layer. Part III: The density effect. Journal of the Atmospheric Sciences, 62, 3705–3723.Google Scholar
  119. Zhang, G., Luchs, S., Ryzhkov, A., Xue, M., Ryzhkova, L., & Cao, Q. (2011). Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma. Journal of Applied Meteorology and Climatology, 50, 1558–1570.Google Scholar
  120. Zhang, J., & Qi, Y. (2010). A real-time algorithm for the correction of brightband effects in radar-derived QPE. Journal of Hydrometeorology, 11, 1157–1171.Google Scholar
  121. Zhang, J., Qi, Y., Tang, L., Cocks, S., Wang, Y., Zhang, P., Ryzhkov, A., Langston, C., & Kaney, B. (2017). MRMS dual-polarization radar synthetic QPE. In 38th Conference on Radar Meteorology (p. 22B.3). Chicago, IL: American Meteorological Society. Retrieved from https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/320875
  122. Zhang, P., Zrnic, D., & Ryzhkov, A. (2013). Partial beam blockage correction using polarimetric radar measurements. Journal of Atmospheric and Oceanic Technology, 30, 861–872.Google Scholar
  123. Zrnic, D., & Ryzhkov, A. (1996). Advantages of rain measurements using specific differential phase. Journal of Atmospheric and Oceanic Technology, 13, 454–464.Google Scholar
  124. Zrnic, D. S., Balakrishnan, N., Ziegler, C. L., Bringi, V. N., Aydin, K., & Matejka, T. (1993). Polarimetric signatures in the stratiform region of a mesoscale convective system. Journal of Applied Meteorology, 32, 678–693.Google Scholar
  125. Zrnic, D. S., Doviak, R. J., Zhang, G., & Ryzhkov, R. V. (2010). Bias in differential reflectivity due to cross-coupling through the radiation patterns of polarimetric weather radars. Journal of Atmospheric and Oceanic Technology, 27, 1624–1637.Google Scholar
  126. Zrnic, D. S., Raghavan, R., & Chandrasekar, V. (1994). Observation of copolar correlation coefficient through a bright band at vertical incidence. Journal of Applied Meteorology, 33, 45–52.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander V. Ryzhkov
    • 1
  • Dusan S. Zrnic
    • 2
  1. 1.Cooperative Institute for Mesoscale Meteorological StudiesThe University of OklahomaNormanUSA
  2. 2.National Severe Storms Laboratory, National Oceanic and Atmospheric AdministrationNormanUSA

Personalised recommendations