Skip to main content

Towards Geological Knowledge Discovery Using Vector-Based Semantic Similarity

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2018)

Abstract

It is not uncommon for large organisations and corporations to routinely produce various kinds of reports indefinitely. Apart from archiving them and the occasional retrieval of some, very little can be done to take advantage of these massive resources for valuable knowledge discovery. The under-utilised unstructured data written in natural language text is often referred to as part of the “dark data”. The good news is, recent success of learning distributed representation of words in vector spaces, especially, the similarity and analogy queries enabled by the so-learned word vectors drive a paradigm shift from “document retrieval” to “knowledge retrieval”. In this paper, we investigated how representational learning of words can affect the entity query results from a large domain corpus of geological survey reports. Extensive similarity tests and analogy queries have been performed. It demonstrated the necessity of training domain-specific word embeddings, as pre-trained embeddings are good at capturing morphological relations, but are inadequate for domain specific semantic relations. Carrying out entity extractions prior to word embedding training will further improve the quality of analogy query results. The framework developed in this paper can also be readily applied to other domain specific corpus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://code.google.com/archive/p/word2vec/.

  2. 2.

    https://nlp.stanford.edu/projects/glove/.

  3. 3.

    https://fasttext.cc/docs/en/english-vectors.html.

  4. 4.

    https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md.

  5. 5.

    https://en.wikipedia.org.

  6. 6.

    http://www.geonames.org.

  7. 7.

    http://dbforms.ga.gov.au/www/geodx.Stratigraphic_Units_Reports.states_ext.

  8. 8.

    http://www.dmp.wa.gov.au/WAMEX-Minerals-Exploration-1476.aspx.

  9. 9.

    https://radimrehurek.com/gensim/.

  10. 10.

    https://en.wikipedia.org/wiki/Geologic_time_scale.

  11. 11.

    https://en.wikipedia.org/wiki/Sedimentary_rock.

References

  1. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  2. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  3. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)

    Google Scholar 

  4. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification. In: AAAI, vol. 333, pp. 2267–2273 (2015)

    Google Scholar 

  5. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

  6. Iacobacci, I., Pilehvar, M.T., Navigli, R.: Embeddings for word sense disambiguation: an evaluation study. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 897–907 (2016)

    Google Scholar 

  7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  8. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  9. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv preprint arXiv:1607.04606 (2016)

  10. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-training distributed word representations. arXiv preprint arXiv:1712.09405 (2017)

  11. Mikolov, T., Dean, J., Le, Q., Strohmann, T., Baecchi, C.: Learning representations of text using neural networks. In: NIPS Deep Learning Workshop, pp. 1–31 (2013)

    Google Scholar 

  12. Google archive: Word2vec (2013). https://code.google.com/archive/p/word2vec/. Accessed 01 March 2018

  13. Mikolov, T., Yih, W.T., Zweig, G.: Linguistic regularities in continuous space word representations. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 746–751 (2013)

    Google Scholar 

  14. Li, B., et al.: Investigating different syntactic context types and context representations for learning word embeddings. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 2421–2431 (2017)

    Google Scholar 

  15. Rong, X.: Word2vec parameter learning explained. arXiv preprint arXiv:1411.2738 (2014)

  16. Gladkova, A., Drozd, A., Matsuoka, S.: Analogy-based detection of morphological and semantic relations with word embeddings: what works and what doesn’t. In: Proceedings of the NAACL Student Research Workshop, pp. 8–15 (2016)

    Google Scholar 

  17. Drozd, A., Gladkova, A., Matsuoka, S.: Word embeddings, analogies, and machine learning: beyond king-man + woman = queen. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 3519–3530 (2016)

    Google Scholar 

  18. Levy, O., Goldberg, Y.: Linguistic regularities in sparse and explicit word representations. In: Proceedings of the Eighteenth Conference on Computational Natural Language Learning, pp. 171–180 (2014)

    Google Scholar 

  19. Turney, P.D.: Similarity of semantic relations. Comput. Linguist. 32(3), 379–416 (2006)

    Article  Google Scholar 

  20. Turney, P.D.: Domain and function: a dual-space model of semantic relations and compositions. J. Artif. Intell. Res. 44, 533–585 (2012)

    Article  Google Scholar 

  21. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media Inc., Newton (2009)

    MATH  Google Scholar 

  22. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majigsuren Enkhsaikhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Enkhsaikhan, M., Liu, W., Holden, EJ., Duuring, P. (2018). Towards Geological Knowledge Discovery Using Vector-Based Semantic Similarity. In: Gan, G., Li, B., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2018. Lecture Notes in Computer Science(), vol 11323. Springer, Cham. https://doi.org/10.1007/978-3-030-05090-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05090-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05089-4

  • Online ISBN: 978-3-030-05090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics