Skip to main content

A More Secure Spatial Decompositions Algorithm via Indefeasible Laplace Noise in Differential Privacy

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11323))

Abstract

Spatial decompositions are often used in the statistics of location information. For security, current works split the whole domain into sub-domains recursively to generate a hierarchical private tree and add Laplace noise to each node’s points count, as called differentially private spatial decompositions. However Laplace distribution is symmetric about the origin, the mean of a large number of queries may cancel the Laplace noise. In private tree, the point count of intermediate nodes may be real since the summation of all its descendants may cancel the Laplace noise and reveal privacy. Moreover, existing algorithms add noises to all nodes of the private tree which leads to higher noise cost, and the maximum depth h of the tree is not intuitive for users. To address these problems, we propose a more secure algorithm which avoids canceling Laplace noise. That splits the domains depending on its real point count, and only adds indefeasible Laplace noise to leaves. The ith randomly selected leaf of one intermediate node is added noise by \(\frac{\left( \beta -i+1 \right) +1+\beta }{(\beta -i+1)+\beta }Lap(\lambda )\). We also replace h with a more intuitive split unit u. The experiment results show that our algorithm performs better both on synthetic and real datasets with higher security and data utility, and the noise cost is highly decreased.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://research.microsoft.com/apps/pubs/?id=152883.

  2. 2.

    http://publish.illinois.edu/dbwork/open-data/.

References

  1. Yin, H., Chen, H., Sun, X., et al.: SPTF: a scalable probabilistic tensor factorization model for semantic-aware behavior prediction. In: IEEE International Conference on Data Mining, pp. 585–594. IEEE Press, New Orleans (2017)

    Google Scholar 

  2. Chen, H., Yin, H., Wang, W., et al.: PME: projected metric embedding on heterogeneous networks for link prediction. In: 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1177–1186. ACM Press, London (2018)

    Google Scholar 

  3. Chen, T., Yin, H., Chen, H., et al.: TADA: trend alignment with dual-attention multi-task recurrent neural networks for sales prediction. In: IEEE International Conference on Data Mining. IEEE Press, Singapore (2018)

    Google Scholar 

  4. Yin, H., Wang, W., Wang, H., et al.: Spatial-aware hierarchical collaborative deep learning for POI recommendation. IEEE Trans. Knowl. Data Eng. 29(11), 2537–2551 (2017)

    Article  Google Scholar 

  5. Yin, H., Sun, Y., Cui, B., et al.: LCARS: a location-content-aware recommender system. In: 19th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 221–229. IEEE Press, Chicago (2013)

    Google Scholar 

  6. Friedman, A., Schuster, A.: Data mining with differential privacy. In: 16th International Conference on Knowledge Discovery and Data Mining, pp. 493–502. ACM Press, Washington (2010)

    Google Scholar 

  7. Fung, B.C.M.: Privacy-preserving data publishing. ACM Comput. Surv. 42(4), 1–53 (2010)

    Article  Google Scholar 

  8. Hardt, M., Ligett, K., Mcsherry, F.: A simple and practical algorithm for differentially private data release. In: Advances in Neural Information Processing Systems, pp. 2339–2347 (2010)

    Google Scholar 

  9. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  10. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  11. Dwork, C.: A firm foundation for private data analysis. Commun. ACM 54(1), 86–95 (2011)

    Article  Google Scholar 

  12. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  14. Xu, J., Zhang, Z., Xiao, X., et al.: Differentially private histogram publication. In: 29th IEEE International Conference on Data Engineering, pp. 32–43. IEEE Press, Brisbane (2013)

    Google Scholar 

  15. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. In: 26th IEEE International Conference on Data Engineering, pp. 225–236. IEEE Press (2010)

    Google Scholar 

  16. Mohammed, N., Chen, R., Fung, B.C.M., et al.: Differentially private data release for data mining. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 493–501. ACM press (2011)

    Google Scholar 

  17. Cormode, G., Procopiuc, C., Srivastava, D., et al.: Differentially private spatial decompositions. In: 28th IEEE International Conference on Data Engineering, pp. 20–31. IEEE Press, Washington (2012)

    Google Scholar 

  18. Li, N., Yang, W., Qardaji, W.: Differentially private grids for geospatial data. In: 28th IEEE International Conference on Data Engineering, pp. 757–768. IEEE Press, Washington (2012)

    Google Scholar 

  19. Zhang, J., Xiao, X., Xie, X.: PrivTree: a differentially private algorithm for hierarchical decompositions. In: 35th ACM Conference on Management of Data, pp. 155–170. ACM Press, San Franciso (2016)

    Google Scholar 

  20. Zhang, J., Cormode, G., et al.: PrivBayes: private data release via Bayesian networks. In: 33th ACM Conference on Management of Data, pp. 1423–1434. ACM Press, Utah (2014)

    Google Scholar 

  21. Zhang, J., Cormode, G., et al.: Private release of graph statistics using ladder functions. In: 34th ACM Conference on Management of Data, pp. 731–745. ACM Press, Melbourne (2015)

    Google Scholar 

  22. Miller, F.P., Vandome, A.F., Mcbrewster, J.: KD-tree (2009)

    Google Scholar 

  23. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: International Conference on Management of Data 1984, pp. 47–57. ACM Press, Massachusetts (1984)

    Google Scholar 

  24. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. In: The 25th ACM Symposium on Theory of Computing, pp. 226–234 (1993)

    Google Scholar 

  25. Demaine, E.D., Mozes, S., Rossman, B., et al.: An optimal decomposition algorithm for tree edit distance. ACM Trans. Algorithms 6(1), 1–19 (2007)

    Article  MathSciNet  Google Scholar 

  26. Li, B., et al.: Dynamic reverse furthest neighbor querying algorithm of moving objects. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q.Z. (eds.) ADMA 2016. LNCS (LNAI), vol. 10086, pp. 266–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49586-6_18

    Chapter  Google Scholar 

  27. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. IEEE Trans. Knowl. Data Eng. 23(8), 1200–1214 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Wang, Y., Zhang, X., Zhou, K., Li, C. (2018). A More Secure Spatial Decompositions Algorithm via Indefeasible Laplace Noise in Differential Privacy. In: Gan, G., Li, B., Li, X., Wang, S. (eds) Advanced Data Mining and Applications. ADMA 2018. Lecture Notes in Computer Science(), vol 11323. Springer, Cham. https://doi.org/10.1007/978-3-030-05090-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05090-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05089-4

  • Online ISBN: 978-3-030-05090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics