An Axiomatization for BSP Algorithms

  • Yoann Marquer
  • Frédéric GavaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11336)


The gurevich’s thesis stipulates that sequential abstract state machines (asms) capture the essence of sequential algorithms. On another hand, the bulk-synchronous parallel (bsp) bridging model is a well known model for hpc algorithm design. It provides a conceptual bridge between the physical implementation of the machine and the abstraction available to a programmer of that machine. The assumptions of the bsp model are thus provide portable and scalable performance predictions on most hpc systems. We follow gurevich’s thesis and extend the sequential postulates in order to intuitively and realistically capture bsp algorithms.


bsp asm Parallel algorithm hpc Postulates Cost model 


  1. 1.
    Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach Using BSP and MPI. Oxford University Press, Oxford (2004)CrossRefGoogle Scholar
  2. 2.
    Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM Trans. Comput. Log. 4(4), 578–651 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Inf. 53(5), 469–492 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bougé, L.: The data parallel programming model: a semantic perspective. In: Perrin, G.-R., Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp. 4–26. Springer, Heidelberg (1996). Scholar
  5. 5.
    Cappello, F., Snir, M.: On communication determinism in HPC applications. In: Computer Communications and Networks (ICCCN), pp. 1–8. IEEE (2010)Google Scholar
  6. 6.
    Cavarra, A., Zavanella, A.: A formal model for the parallel semantics of p3l. In: ACM Symposium on Applied Computing (SAC), pp. 804–812 (2000)Google Scholar
  7. 7.
    Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning synchronised parallel computing –simplified parallel ASM thesis. Theor. Comput. Sci. 649, 25–53 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks. Softw. Pract. Exp. 40(12), 1135–1160 (2010)CrossRefGoogle Scholar
  9. 9.
    Gorlatch, S.: Send-receive considered harmful: myths and realities of message passing. ACM TOPLAS 26(1), 47–56 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Log. 1(1), 77–111 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hill, J.M.D., McColl, B., et al.: BSPLIB: the BSP programming library. Parallel Comput. 24, 1947–1980 (1998)CrossRefGoogle Scholar
  12. 12.
    Malewicz, G., et al.: pregel: a system for large-scale graph processing. In: Management of data, pp. 135–146. ACM (2010)Google Scholar
  13. 13.
    Marquer, Y.: Algorithmic completeness of imperative programming languages. Fundamenta Informaticae, pp. 1–27 (2017, accepted)Google Scholar
  14. 14.
    Pace, M.F.: BSP vs MAPREDUCE. Procedia Comput. Sci. 9, 246–255 (2012)CrossRefGoogle Scholar
  15. 15.
    Prinz, A., Sherratt, E.: Distributed ASM- pitfalls and solutions. In: Ait Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. Lecture Notes in Computer Science, vol. 8477, pp. 210–215. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Schewe, K.-D., Wang, Q.: A simplified parallel ASM thesis. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 341–344. Springer, Heidelberg (2012). Scholar
  17. 17.
    Seo, S., et al.: HAMA: an efficient matrix computation with the MAPREDUCE framework. In: Cloud Computing (CloudCom), pp. 721–726. IEEE (2010)Google Scholar
  18. 18.
    Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and answers about BSP. Sci. Program. 6(3), 249–274 (1997)Google Scholar
  19. 19.
    Tiskin, A.: The design and analysis of bulk-synchronous parallel algorithms. PhD thesis. Oxford University Computing Laboratory (1998)Google Scholar
  20. 20.
    Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33(8), 103–111 (1990)CrossRefGoogle Scholar
  21. 21.
    Valiant, L.G.: A bridging model for multi-core computing. J. Comput. Syst. Sci. 77(1), 154–166 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Marquer, Y., Gava, F.: An ASM thesis for BSP. Technical report (2018).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory of Algorithms, Complexity and Logic (LACL)University of Paris-EastCréteilFrance

Personalised recommendations